{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "\n", "
Model: \"TCN\"\n",
"
\n"
],
"text/plain": [
"\u001b[1mModel: \"TCN\"\u001b[0m\n"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", "┃ Layer (type) ┃ Output Shape ┃ Param # ┃ Connected to ┃\n", "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", "│ inputs (InputLayer) │ (None, 256, 1) │ 0 │ - │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ reshape (Reshape) │ (None, 1, 256, 1) │ 0 │ inputs[0][0] │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ ENC.CN │ (None, 1, 256, 1) │ 7 │ reshape[0][0] │\n", "│ (DepthwiseConv2D) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ ENC.BN │ (None, 1, 256, 1) │ 4 │ ENC.CN[0][0] │\n", "│ (BatchNormalizatio… │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.DW.B1.CN │ (None, 1, 256, 1) │ 7 │ ENC.BN[0][0] │\n", "│ (DepthwiseConv2D) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.DW.B1.BN │ (None, 1, 256, 1) │ 4 │ B1.D1.DW.B1.CN[0… │\n", "│ (BatchNormalizatio… │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.DW.ACT │ (None, 1, 256, 1) │ 0 │ B1.D1.DW.B1.BN[0… │\n", "│ (Activation) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.PW.B1.CN │ (None, 1, 256, │ 16 │ B1.D1.DW.ACT[0][… │\n", "│ (Conv2D) │ 16) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.PW.B1.BN │ (None, 1, 256, │ 64 │ B1.D1.PW.B1.CN[0… │\n", "│ (BatchNormalizatio… │ 16) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.PW.ACT │ (None, 1, 256, │ 0 │ B1.D1.PW.B1.BN[0… │\n", "│ (Activation) │ 16) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B2.D1.DW.B1.CN │ (None, 1, 256, │ 112 │ B1.D1.PW.ACT[0][… │\n", "│ (DepthwiseConv2D) │ 16) │ │ │\n", "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n", "\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", "│ inputs (\u001b[38;5;33mInputLayer\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ - │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ reshape (\u001b[38;5;33mReshape\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ inputs[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ ENC.CN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m7\u001b[0m │ reshape[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ ENC.BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m4\u001b[0m │ ENC.CN[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.DW.B1.CN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m7\u001b[0m │ ENC.BN[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.DW.B1.BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m4\u001b[0m │ B1.D1.DW.B1.CN[\u001b[38;5;34m0\u001b[0m… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.DW.ACT │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, \u001b[38;5;34m1\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ B1.D1.DW.B1.BN[\u001b[38;5;34m0\u001b[0m… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.PW.B1.CN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, │ \u001b[38;5;34m16\u001b[0m │ B1.D1.DW.ACT[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;34m16\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.PW.B1.BN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, │ \u001b[38;5;34m64\u001b[0m │ B1.D1.PW.B1.CN[\u001b[38;5;34m0\u001b[0m… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;34m16\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B1.D1.PW.ACT │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ B1.D1.PW.B1.BN[\u001b[38;5;34m0\u001b[0m… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;34m16\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ B2.D1.DW.B1.CN │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1\u001b[0m, \u001b[38;5;34m256\u001b[0m, │ \u001b[38;5;34m112\u001b[0m │ B1.D1.PW.ACT[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m…\u001b[0m │\n", "│ (\u001b[38;5;33mDepthwiseConv2D\u001b[0m) │ \u001b[38;5;34m16\u001b[0m) │ │ │\n", "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Total params: 10,223 (39.93 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m10,223\u001b[0m (39.93 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Trainable params: 9,675 (37.79 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m9,675\u001b[0m (37.79 KB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Non-trainable params: 548 (2.14 KB)\n", "\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m548\u001b[0m (2.14 KB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model = nse.models.tcn.tcn_from_object(\n", " x=keras.Input(shape=(params.frame_size, 1), name='inputs'),\n", " params=architecture[\"params\"],\n", " num_classes=1\n", ")\n", "model.summary(layer_range=('inputs', model.layers[10].name))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Train the model" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
INFO Creating synthetic dataset cache with 5000 patients ecg_synthetic.py:159\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m Creating synthetic dataset cache with \u001b[1;36m5000\u001b[0m patients \u001b]8;id=172088;file:///workspaces/heartkit/heartkit/datasets/ecg_synthetic.py\u001b\\\u001b[2mecg_synthetic.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=461477;file:///workspaces/heartkit/heartkit/datasets/ecg_synthetic.py#159\u001b\\\u001b[2m159\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Building ecg-synthetic cache: 100%|██████████| 5000/5000 [00:57<00:00, 86.91it/s] \n" ] }, { "data": { "text/html": [ "
INFO Validation steps per epoch: 39 datasets.py:85\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m Validation steps per epoch: \u001b[1;36m39\u001b[0m \u001b]8;id=99779;file:///workspaces/heartkit/heartkit/tasks/denoise/datasets.py\u001b\\\u001b[2mdatasets.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=277033;file:///workspaces/heartkit/heartkit/tasks/denoise/datasets.py#85\u001b\\\u001b[2m85\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Training: 0%| 0/100 ETA: ?s, ?epochs/sWARNING: All log messages before absl::InitializeLog() is called are written to STDERR\n", "I0000 00:00:1723838225.604155 751478 service.cc:146] XLA service 0x7a52b8001f20 initialized for platform CUDA (this does not guarantee that XLA will be used). Devices:\n", "I0000 00:00:1723838225.604174 751478 service.cc:154] StreamExecutor device (0): NVIDIA GeForce RTX 4090, Compute Capability 8.9\n", "I0000 00:00:1723838232.858832 751478 device_compiler.h:188] Compiled cluster using XLA! This line is logged at most once for the lifetime of the process.\n", "Training: 100%|██████████ 100/100 ETA: 00:00s, 1.59s/epochs" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m39/39\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 975us/step - cos: 0.7118 - loss: 0.0511 - mae: 0.1445 - mse: 0.0452 - snr: 11.9220\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\n" ] }, { "data": { "text/html": [ "
INFO [VAL SET]COS=0.7079, LOSS=0.0528, MAE=0.1466, MSE=0.0469, SNR=11.9038 train.py:149\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0mVAL SET\u001b[1m]\u001b[0m\u001b[33mCOS\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.7079\u001b[0m, \u001b[33mLOSS\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0528\u001b[0m, \u001b[33mMAE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.1466\u001b[0m, \u001b[33mMSE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0469\u001b[0m, \u001b[33mSNR\u001b[0m=\u001b[1;36m11\u001b[0m\u001b[1;36m.9038\u001b[0m \u001b]8;id=347748;file:///workspaces/heartkit/heartkit/tasks/denoise/train.py\u001b\\\u001b[2mtrain.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=260161;file:///workspaces/heartkit/heartkit/tasks/denoise/train.py#149\u001b\\\u001b[2m149\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "task.train(params)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Model evaluation\n", "\n", "Now that we have trained the model, we will evaluate the model on the test dataset. Similar to training, we will provide the high-level configuration to the task process." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
INFO Creating synthetic dataset cache with 5000 patients ecg_synthetic.py:159\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m Creating synthetic dataset cache with \u001b[1;36m5000\u001b[0m patients \u001b]8;id=288389;file:///workspaces/heartkit/heartkit/datasets/ecg_synthetic.py\u001b\\\u001b[2mecg_synthetic.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=256787;file:///workspaces/heartkit/heartkit/datasets/ecg_synthetic.py#159\u001b\\\u001b[2m159\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Building ecg-synthetic cache: 100%|██████████| 5000/5000 [00:57<00:00, 87.16it/s] \n" ] }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m39/39\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m2s\u001b[0m 25ms/step - cos: 0.7238 - loss: 0.0443 - mae: 0.1328 - mse: 0.0384 - snr: 12.3671\n" ] }, { "data": { "text/html": [ "
INFO [TEST SET] COS=0.7245, LOSS=0.0437, MAE=0.1316, MSE=0.0377, SNR=12.3787 evaluate.py:37\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0mTEST SET\u001b[1m]\u001b[0m \u001b[33mCOS\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.7245\u001b[0m, \u001b[33mLOSS\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0437\u001b[0m, \u001b[33mMAE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.1316\u001b[0m, \u001b[33mMSE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0377\u001b[0m, \u001b[33mSNR\u001b[0m=\u001b[1;36m12\u001b[0m\u001b[1;36m.3787\u001b[0m \u001b]8;id=893749;file:///workspaces/heartkit/heartkit/tasks/denoise/evaluate.py\u001b\\\u001b[2mevaluate.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=218337;file:///workspaces/heartkit/heartkit/tasks/denoise/evaluate.py#37\u001b\\\u001b[2m37\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "task.evaluate(params)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Export model to TF Lite / TFLM\n", "\n", "Once we have trained and evaluated the model, we need to export the model into a format that can be used for inference on the edge. Currently, we export the model to TensorFlow Lite flatbuffer format. This will also generate a C header file that can be used with TensorFlow Lite for Microcontrollers (TFLM).\n", "\n", "For this model, we will export as a 32-bit floating point model.\n", " \n", "__NOTE:__ We utilize `CONCRETE` mode to lower the model to concrete functions before converting. This is because TF (MLIR) fails to properly lower the dilated convolutional layers." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "quantization = hk.QuantizationParams(\n", " enabled=True,\n", " format=\"FP32\",\n", " io_type=\"float32\",\n", " conversion=\"CONCRETE\",\n", ")\n", "params.quantization = quantization" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
INFO Creating synthetic dataset cache with 5000 patients ecg_synthetic.py:159\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m Creating synthetic dataset cache with \u001b[1;36m5000\u001b[0m patients \u001b]8;id=313048;file:///workspaces/heartkit/heartkit/datasets/ecg_synthetic.py\u001b\\\u001b[2mecg_synthetic.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=514688;file:///workspaces/heartkit/heartkit/datasets/ecg_synthetic.py#159\u001b\\\u001b[2m159\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n" ], "text/plain": [] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
[08/16/24 20:02:23] WARNING WARNING:absl:Please consider providing the trackable_obj argument in the lite.py:2166\n", " from_concrete_functions. Providing without the trackable_obj argument is \n", " deprecated and it will use the deprecated conversion path. \n", "\n" ], "text/plain": [ "\u001b[2;36m[08/16/24 20:02:23]\u001b[0m\u001b[2;36m \u001b[0m\u001b[31mWARNING \u001b[0m WARNING:absl:Please consider providing the trackable_obj argument in the \u001b]8;id=520246;file:///workspaces/heartkit/.venv/lib/python3.12/site-packages/tensorflow/lite/python/lite.py\u001b\\\u001b[2mlite.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=384487;file:///workspaces/heartkit/.venv/lib/python3.12/site-packages/tensorflow/lite/python/lite.py#2166\u001b\\\u001b[2m2166\u001b[0m\u001b]8;;\u001b\\\n", "\u001b[2;36m \u001b[0m from_concrete_functions. Providing without the trackable_obj argument is \u001b[2m \u001b[0m\n", "\u001b[2;36m \u001b[0m deprecated and it will use the deprecated conversion path. \u001b[2m \u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
INFO Validating model results export.py:83\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m Validating model results \u001b]8;id=941295;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py\u001b\\\u001b[2mexport.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=727514;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py#83\u001b\\\u001b[2m83\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "I0000 00:00:1723838543.688860 751181 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1723838543.688944 751181 devices.cc:67] Number of eligible GPUs (core count >= 8, compute capability >= 0.0): 1\n", "I0000 00:00:1723838543.689113 751181 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1723838543.689169 751181 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1723838543.689214 751181 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1723838543.689287 751181 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "I0000 00:00:1723838543.689333 751181 cuda_executor.cc:1015] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero. See more at https://github.com/torvalds/linux/blob/v6.0/Documentation/ABI/testing/sysfs-bus-pci#L344-L355\n", "W0000 00:00:1723838543.815333 751181 tf_tfl_flatbuffer_helpers.cc:392] Ignored output_format.\n", "W0000 00:00:1723838543.815348 751181 tf_tfl_flatbuffer_helpers.cc:395] Ignored drop_control_dependency.\n", "INFO: Created TensorFlow Lite XNNPACK delegate for CPU.\n" ] }, { "data": { "text/html": [ "
INFO [TF METRICS] LOSS=0.0396 MAE=0.1357 MSE=0.0396 RMSE=0.1991 COSINE=0.7178 export.py:90\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0mTF METRICS\u001b[1m]\u001b[0m \u001b[33mLOSS\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0396\u001b[0m \u001b[33mMAE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.1357\u001b[0m \u001b[33mMSE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0396\u001b[0m \u001b[33mRMSE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.1991\u001b[0m \u001b[33mCOSINE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.7178\u001b[0m \u001b]8;id=496666;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py\u001b\\\u001b[2mexport.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=35165;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py#90\u001b\\\u001b[2m90\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
INFO [TFL METRICS] LOSS=0.0396 MAE=0.1357 MSE=0.0396 RMSE=0.1991 COSINE=0.7177 export.py:91\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m \u001b[1m[\u001b[0mTFL METRICS\u001b[1m]\u001b[0m \u001b[33mLOSS\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0396\u001b[0m \u001b[33mMAE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.1357\u001b[0m \u001b[33mMSE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.0396\u001b[0m \u001b[33mRMSE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.1991\u001b[0m \u001b[33mCOSINE\u001b[0m=\u001b[1;36m0\u001b[0m\u001b[1;36m.7177\u001b[0m \u001b]8;id=70190;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py\u001b\\\u001b[2mexport.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=68341;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py#91\u001b\\\u001b[2m91\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
INFO Validation passed (0.0000) export.py:99\n", "\n" ], "text/plain": [ "\u001b[34mINFO \u001b[0m Validation passed \u001b[1m(\u001b[0m\u001b[1;36m0.0000\u001b[0m\u001b[1m)\u001b[0m \u001b]8;id=375015;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py\u001b\\\u001b[2mexport.py\u001b[0m\u001b]8;;\u001b\\\u001b[2m:\u001b[0m\u001b]8;id=497680;file:///workspaces/heartkit/heartkit/tasks/denoise/export.py#99\u001b\\\u001b[2m99\u001b[0m\u001b]8;;\u001b\\\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# TF dumps a lot of info to stdout, so we redirect it to /dev/null\n", "with open(os.devnull, 'w') as devnull:\n", " with contextlib.redirect_stdout(devnull), contextlib.redirect_stderr(devnull):\n", " task.export(params)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## ECG Denoising Demo\n", "\n", "Finally, we will demonstrate how to use the trained ECG denoiser model to remove noise and artifacts from raw ECG signals. We will load a sample ECG signal, add noise to it, and then denoise it using the trained model. We will visualize the original, noisy, and denoised ECG signals to compare the results." ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "model = nse.models.load_model(params.model_file)" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 9ms/step\n" ] } ], "source": [ "ecg = next(ds_gen)\n", "aug_ecg = augmenter(preprocessor(keras.ops.convert_to_tensor(np.reshape(ecg, (1, -1, 1)))), training=True).numpy().squeeze()\n", "clean_ecg = model.predict(np.reshape(aug_ecg, (1, -1, 1)))\n", "snr = nse.metrics.Snr()\n", "snr.update_state(ecg.reshape(1, -1, 1), aug_ecg.reshape(1, -1, 1))\n", "aug_snr = snr.result().numpy()\n", "snr.reset_state()\n", "snr.update_state(ecg.reshape(1, -1, 1), clean_ecg.reshape(1, -1, 1))\n", "clean_snr = snr.result().numpy()" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3QAAAHsCAYAAACaOu+8AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddXgU1/oH8O/MusSdJCQkIbi7QymFQmlpgRaoUvfb3vqv7q637kpLvUhbaCnF3d0DBOK+bvP7Y8iSkd1NshvZ5P08z31ud3Z254RMZuY95z3vYXK79+dACCGEEEIIISTssC3dAEIIIYQQQgghjUMBHSGEEEIIIYSEKQroCCGEEEIIISRMUUBHCCGEEEIIIWGKAjpCCCGEEEIICVMU0BFCCCGEEEJImKKAjhBCCCGEEELCFAV0hBBCCCGEEBKmKKAjhBBCCCGEkDClbOkGEEJIa7Js6UKkpXYIuN+DDz+BX35dKPve8GFDcMGUSejfrw8S4uOgVqtRWVWNQ4cOY8WqNViw8HdUVFTKfjYyMgIzp0/DiOFD0TknG9HRUXC53CivqMDBg4ewdt1G/LHkL5SWljXo5zqwZ4vgtcfjgdlsQXVNDY4ey8Pu3XuwcPGfOHLkWIO+t7W5/dYbccdtN+F/73yAt9/9sNHf8/yzT+CSaVP9/p5bg/byeyWEEOIbBXSEECJjy9btOH7ipM/3T8i8FxMdjVdffhYjhg8FAOTnn8KGjZthsdqQEB+Hfn37YMTwofjP7Tfjmutuxc5duwWfnzrlfDzx2IMwGo1wOJ3Ys2cftmzdDgBITEzAiOFDcc64MbjvnjvxwEOP448lfzX451q1ei1KzgSDep0OsbEx6N+3N0aNGIZbbroeS/5ahieeeh7l5RUN/m7Scuj3Sggh7RcFdIQQIuOHn35t0MiM0WjEvK8+QVZWJo4cOYZHn3jGG4zVUqlUuHjaBbjjtpuRkBAveG/2ZTPwxGMPwePx4KNPPseHH3+O6uoawT4ajQYXTJ6IG2+Yi7T01Eb9XB9+/Dk2bhKO6igUCpw/aQIevP9uTJwwHjlZWZh1xVzJ8cPBN/O+x+9/LPU5Alpfr73+Nj76+HMUl5SGpmFNrK3/XgkhhPhGc+gIISQEHv2/+5CVlYn8/FOYfeW1kmAOAJxOJ77/4RdMmz4bR4+eTYHLysrE/z10LwDg2edfwSuv/U/2odtut+OnXxbgwotnYcWK1SFru9vtxqLFf2LmrKtRXl6B7OxOeODeu0L2/c2porISR4/loaKyMqjvKSktxdFjeTCZTKFpWAtoS79XQgghvlFARwghQUpLS8UFUyYBAJ5/6XVUVVX73b+srBzH8o57X99w3TVQq1TYvWcfvp43P+Dx7HY7Dh46HFyjZRQUFOJ/73wAALjowgsQFxcr2Uej0WDu1Vdg/rzPsWndv9i5dS3+XPQT7rvnTkRHRUn2v3jaVBzYswXPP/sEdDot/nvX7Vj6x6/YtW0dVq9YgheeexKJiQk+29SrVw+88eoLWLX8T+zavh5rV/6F9955HcOHDZHd//Zbb8SBPVtw+603St6bdN65+Ozjd7F+zTLs3r4B69csw+IFP+DpJx9Bl9wcwb7PP/sEDuzZgounTfX5/TEx0XjskQfw79+LsWv7evz792I88n/3ISLC6PPnmX7xhfhp/lfYvnkN1q9Zho/efwv9+vbG4EEDcGDPFnz52Qc+P9tYTf17NRqNePD+u7Fs6ULs3LoWS37/BTdcdzUYhgHApws/+fj/8f9O29bhz0U/4Yo5l/lsr1arxQ3XX4Off/gGWzeuxPbNa7Dot+9x1523IDIyIkT/KoQQ0nZQQEcIIUEaN2YUlEolqqqq8c/yFQ3//NhRAIAFi34PddMabOHiP+DxeKBSKTFk8EDBe4kJ8fjh2y/w4P13IyMjHbt278GKlWugUqtx/bVX46fvv0KHlGTZ740wGvHdN59h1qXTceTIUaxctRYMGFx80QX49utPYTRKg6CZMy7G/G8+w/mTJqCktAxLli7D8RMncM7Y0fjs43dx2y031Pvnuu2WG/Dm6y9i0MABOHToCP5c+jd27NgNt9uDGZdchKFDBjXo3yklOQm//PANzptwDnbu3oO1azfAYDDgystn4dOP3oFSKZ3R8PijD+K5Zx5Ht25dsHPXbqxZux7JyUn4+ouPMHbMqAYdv6Ga6vcaGRGB+fM+w9Qp52P3nr3YuHkrkhITce9/78TDD92L9PQ0/PT91xg9agS2bd+Jrdt2ID09DY8+fD9uuO5qyfdFRUXi268/wb1334GO6WlYv2ETVqxajbjYWNxy0/X4+fuvkdohpUn+jQghJFzRHDpCCAlSzx7dAAB79+2Hx+Np0GfT0lIREx0NANi9e2+om9ZgNTUmnDiZj8yMjuicky14743XXkSXLp3xw4+/4vkXX4XZYgHAz9W65+47cN3cK/H8s0/g6mtvlnzvhHPHYdXqtZhz5fUwm80A+IqeX3z6Prp364o5s2biw48/8+6f2zkHjz/yIBiGwf0PPorfFp4NdkePHI53/vcq7rz9ZmzbvhNr123w+zOpVCrccN01MJvNmH7plYLRUQDokJIMrVbboH+nGdOn4adfFuDxJ5+D0+kEACQnJ2H+N5+hd6+emHjeeCz+fYl3/3PGjcacWTNhNptx3Y23Y9v2nd73rrn6cjx0/38bdPyGaqrf67njx+Kf5Ssw/d4rYbPZAADdu3XF999+gTmzZmLokEFYtuxfPP3cS3C73QCA8ePG4N23X8NNN1yLr76Z7/0cADz+yIPo3q0rtu/YhZtu+Q8qq6oAAHq9Dm+8+gLGjB6JV156BrOvuK5J/p0IISQc0QgdIYTIeOFMyp2v/9VNq4uNjQEAlJWXN/g4MTHR3v/2VYHwtltuwPPPPiH43/1NOBeqtqBIdPTZVLtRI4dhQP++2LtvPx5/6jnvQz/Az9V6+dU3ceDgYQwdMkgSMACA2WLBQw8/6Q3mAKC6ugYffvw5AGD4sMGC/a+6YjZUKiX+WrZcEMwBwMrVazH/h58BANfNvSrgz2M0GqDTaXEy/5QkmAOA0wWFOHosL+D31FVQUIinnnnRG8wBQGFhkTdldvhQ6c8DAF99M18QzAHA5198I6l42hSa5PdqNuPhx54WBGV79+3HylWroVAooNfr8dyLr3qDOQBYtnwFDhw4hIgIo7czBABSUpIxaeK58Hg8eOyJZ7zBHABYLFY88vgzsNls6N+vL/r17R2SfxNCCGkLaISOEEJkBFq2wOl0NVtbzhk7Gj17dhdsyz91Gi+98kaTHI9l+b4+juO828aMHgkAWPrXP4KH81ocx2Hzlq3okpuDfv1649DhI4L3d+/ei5JSacXI2uIwSYmJgu2DBw8AAJ+VRn/8+TdcefksDBzQFyzL+h0ZraioRH7+KXTtkosH7rsbP/78a9Drsq3bsEkQxNQ6UvvzJJ39eRQKhTcAWbjoD9nvW7T4T/Tu1TOoNgXSJL/XPftkOyLyjvN/Oxs2bobD4ZC+f+IEunTpLJg/OWhAPygUCuzesw8HDkrniBYXl2D1mvU4d/xYDBk8UBIYE0JIe0UBHSGEyGjIsgW1D7RxsdJiE4HULa8fGxsjO4I0/bIrvf89oH9fzPvqkwYfpyFqU0DrFndJT0sDANx15624685b/X4+NiZGsq2goFB2X5OJH7FTa9SC7UlnHvTz80/Lfu7kiXwAfAGN6OiogOur3f/QY3jr9Zdw7TVX4NprrkBFZSV27tyNNes2YMGC3xtcFTPgz6M++/PExER7UzpPnZb/efJPFTTo+I3RnL9Xy5mRPl/vm838+xqNxrutNgjOP3XKZxtOnMwX7EsIIYQCOkIICdqevfsx7aIL0L1b14CjRWKnTp1GRWUlYqKj0bNHN9nlDppTZGQE0tI6AAAO1hklYVm+YuHmLdu8D9W+HDp8VLLNU2dUqCVs2bod55w3FWPHjMSggf3Rr28fjBwxDGNGj8Sdt92E2+68F+s3bKr39zV0rmRATfzv01K/15D/OxFCCJGggI4QQoK0fMUqPHj/3YiKisQ548bg72XL6/1ZjuOwYsVqTLvoAlx4wWR88dW3TdjSwC6YMgksy8LhdGL9xrMBTkFhEQBg2T8r8OnnXzV5O4qKS5DRMR3p6amSND8A3oXVbTZbwGUiatntdixZugxLli4DwI+c3XXnrZh16XQ898zjOGfCBaH7AeqorKyC3W6HRqNBhw4psumeqakdmuTYtVrL79WfoqJiAGdHDeWkp6UK9iWEEEJFUQghJGgnT+Z7Kxo+eN9diIqK9Lt/bGwMOmVmeF9/+MnncDpd6NmzO+bMmtmkbfUnJSUZd9x6EwB+7lrddNCVq9YCACZNPLdZ2rJx4xYAwMUXTZV9f8bFFwEANm/ZLjv3qz4qKirx8qtvAQBSO6Q02RpnLpcL23fsAgBMPbNeodiUyROb5NhA6/q9+rNpyza43W5065qLLl06S95PiI/HqJHDAPBz8wghhPAooCOEkBB4+rmXkHf8BNLT0zDvq08woH9fyT4qlRLTL74Qv/44D1lZnbzbjxw5hudfehUA8OjD9+Pu/9wmuzg1y7Lo07tXyNuuUCgwZfJEfP/tF4iNjcGhw0fw8qtvCvZZ9s+/2LlrN/r07onnn31CUJ2zVmRkBGZdOh0KhSLoNn359bdwOl04d/xYXHjB+YL3RgwfissuvQQA6jWq1CElGTOmT4PBYJC8d86ZNQArq6q889+awpdffwcAuPLyWejTW1j85KorZqNvn/bxe/WnoKAQfy75GyzL4qnHHxYsaK7TafHUkw9Dq9Vi67btVBCFEELqoJRLQgiRMXP6NAweNMDn+2vWrseixX96X1dX12D2FdfijVdfwJDBAzHvq09w8mQ+Dhw8DKvNhvi4WPTu1QMGgwE1NSYUl5QIvu+bed/DbLbgsYfvx803Xotrr7kCu/fsQ1FRMVwuF2JiYtCjR1fEREfD4XD4rJYYyI3XX4OLp/GjXlqNBnFxsejRvat3Ye8/l/yNJ55+HjU1JsHnOI7DbXfcgw/eexOXTJuKieeNx4EDB3G6oBAqlQrpaanI7ZwDpVKJn39d2OhRs1oHDx3GU8++gCcefQgvv/gMrr7qchw7locOHVLQr29vsCyLt95+H2vWrg/4XZFRkXj2qUfx+KMPYv/+A95CKxkZHdGje1d4PB68/MqbTTrf6+9ly/Hd9z9h1qXTMe+rT7Bl63YUl5Qit3MOsrMy8dkXX2Pu1Vc0unpquPxeA3nqmReRlZWJvn164a8/f8OGjZvhdrsxaGB/xMXF4uTJfNx7/yNN2gZCCAk3FNARQoiMAf37yo6y1aqpqREEdABf7fKquTdh1MhhmDJ5Evr17Y1hQwdBpVajsrIK27bvwoqVq/HbwsWy875+/W0Rlv+7EjOnT8PIEcOQnZ2Fnj26we32oKKyEjt27Mba9Rvw++9LZZcAqI9RI4cD4ItVWCwWVNeYsG3HLuzatQcLF/+Bo0fzfH62uKQUl86+BpdMm4rJ55+HLrmd0atnT1RVVaG4pATfff8T/lm+UrZMfWN8/8Mv2L//EK6beyX69++LLrmdYTKZsGLlGnz59bcBFxSvdfJEPp59/hUMGtgfnTtnY8zoEQDDoLioGL/8tghfff0t9uzdH5I2+/P4k89h1+69mH3ZDPTp3RN2uwM7d+/Bk08/j7Qzc+gaWm2zVjj9Xv2prKrCrMuvxZVXzMLkSRMwYvhQsCyD/FOn8f2Pv+DTz79CdXVNk7eDEELCCZPbvX/Llh4jhBBC2rnnnn4M0y+5CM+/9Bo+/+Kblm4OIYSQMEJz6AghhJBmkJOdBZ1OK9jGMAxmzrgYF0+bCpvNhsWLl7RQ6wghhIQrSrkkhBBCmsF1116F8ydOwL79+1FUVAKdToec7E5IS0uFy+XCk0+/0OhUWkIIIe0XBXSEEEJIM/jjj6UwGgzo0aMbunbpAqVSgbKyciz+fQm++Goeduzc3dJNJIQQEoZoDh0hhBBCCCGEhCmaQ0cIIYQQQgghYYoCOkIIIYQQQggJUxTQEUIIIYQQQkiYooCOEEIIIYQQQsIUBXSEEEIIIYQQEqYooCOEEEIIIYSQMEUBHSGEEEIIIYSEKQroCCGEEEIIISRMUUBHCCGEEEIIIWGKAjpCCCGEEEIICVMU0BFCCCGEEEJImKKAjhBCCCGEEELCFAV0hBBCCCGEEBKmKKAjhBBCCCGEkDBFAR0hhBBCCCGEhCkK6AghhBBCCCEkTFFARwghhBBCCCFhigI6QgghhBBCCAlTFNARQgghhBBCSJiigI4QQgghhBBCwhQFdIQQQgghhBASpiigI4QQQgghhJAwRQEdIYQQQgghhIQpCugIIYQQQgghJEwpW7oBdSUmJsBstrR0MwghhBBCCCGkRRkMehQXlwTcr9UEdImJCVi1/M+WbgYhhBBCCCGEtAqjxk0KGNS1moCudmRu1LhJNEpHCCGEEEIIabcMBj1WLf+zXnFRqwnoapnNFpjN5pZuBiGEENLucADAKgDOA4bjWro5hBBC6qHVBXQkPHAqNWqmzoWjcx+oju9HxC8fgbVbW7pZhBBCGolTKFE941Y4egyCovAEoua9DkVlaUs3ixBCSABU5ZI0ir3HENj7jgRniICj+yDYBoxp6SYRQggJgqNLXzh6DAIAuJM7wjpsYgu3iBBCSH1QQEcaxdkhU/DalZzRMg0hhBASEq7EdOHrhNQWagkhhJCGoICONAqn0QlfqzUt1BJCCCGhwGm0wtd0XSeEkLBAAR1pFE4tuvGr6MZPCCHhTNxRB5W6ZRpCCCGkQSigI43CaWmEjhBC2hLqqCOEkPAUsiqX2dmdkNUpE3qdDr8t/D1UX0taKfGNn3pyCSEkvElSLimgI4SQsBD0CF2vnt3x60/zsPCX+XjztRfx/LNPeN8bOKAftm9eg3PGjQ72MKSVoRs/IYS0LTQ3mhBCwlNQAV1Odha++PR9pKWm4vMv52HlqrWC9zdv2YaKykpMOu/coBpJWh9pag6N0BFCSDij6zohhISnoAK6O26/CQBwyaWX46VX3sCu3Xsk+2zfvhO9evYI5jCkFaKeXEIIaVvEmRdQqsCxNNWeEEJau6Cu1IMHDsCSv/7BiRP5PvcpKChEQkJ8MIchrQwHmYCOUi4JISSsecRzo0GjdIQQEg6CCugMBj3Ky8v97qPRasAqqIevTVGpAXGvrUoNjmFapj2EEEKCJlm2ANRZRwgh4SCoSKugsAi5nXP87tO9W1ecPOl7BI+EH0mFy1rUk0sIIWGJY1lALnWeAjpCCGn1ggro/l2xCiOGD8WwoYNl3z9/4gT07dMLfy/7N5jDkFZGMs+idjvd+AkhJCz56qij+dGEENL6BbUO3fsffoqJE8bjw/ffwq+/LUJ8fBwAYM6smejbpxemTJ6IU6dO47MvvglJY0nr4FFL03IACugIISRc+QzoKPOCEEJavaACuoqKSlxxzY14+YWnMOOSi7zbH334fgDAjp27cc99/weTyRRcK0mr4nOEjnpyCSEkLNF1nRBCwldQAR0A5OefwuwrrkPXrrno27sXoqIiYTKbsXPnbuzavTcUbSStjNzEeYBu/KRtcqZmgVOpoTp+AAzHtXRzCGkSPq/rlHlB2iB3ZAw4nRGKopOgcm6kLQg6oKu1f/9B7N9/MFRfR1ox33PoKDWHtC3mcRfDMu4SAIBm9wZEfv92C7eIkKbhO+WSAjrStth6D0fNxTcCCgU0uzcg4vu3KagjYS+ooihGoxFdcnOg1crfCHQ6Lbrk5sBgMARzGNLKcDSHjrQDHADr0Ine1/aeQ+BMy265BhHShHyP0FFHHWlbLKOnAgoFgDPX9azuLdwiQoIXVEB32y034NuvP4VCvCZZ7ZezCnz79ae45aZrgzkMaWVohI60CyoNOJ2wM8o2YGzLtIWQJubrui67lAEhYcydmCZ4bRl7cQu1hJDQCSqgGzVyGNas3QCzxSL7vtlsxqo16zB61MhgDkNaGbrxk/ZAbk6oI7NbC7SEkKZHVS5JeyA3C9qZ2bXZ20FIqAUV0HVIScbxEyf87nPyZD46pCQHcxjSytDkedIeyD3IeuKS4NEZW6A1hDQtKnZF2gUfHRTu6IRmbgghoRVUQMdxHNRq/713arUarCKow5BWhhagJe2Brw4KR06vZm4JIU3P4zOVnq7rpO3weV3P7dPMLSEktIKKtI4ey8OoEcN9vs8wDEaPHI5jx44HcxjSytDkedIe+OqgcOT2bd6GENIMqMolaQ98PafYu/Rt3oYQEmJBBXSLfl+CzMyOeO6Zx2E0CtOQjEYjnnvmcXTsmI4Fi34PqpGkdfFdFIVu/KTt8BnQde4FjqEi16RtoZRL0h74Op+dmd3oGYaEtaDWoftm3veYOGE8Lr7oAow/Zwx27d6L4qJiJCYlolfP7oiMiMCmzVvxzbzvQ9Ve0gpQTy5pD3ydz5w+Aq60HKhOHmrmFhHSdKh6MWkPfD6nqNRwZHWH5sC25m0QISES1Aidy+XCNdfdgs+++AYKVoERw4bg4mlTMWLYELAMi08++xLX3Xg7XC5XqNpLWgEP9eSSdsDf+UzzLUhbQyN0pD2g6zppq4IaoQMAh8OBl155A6+89hayOmUiIsKI6poaHDt2HB6PJxRtJK2Mz2ULqCeXtCH+RpwduX1gWPZjM7aGkKblK/MClHlB2hD/AV1fcAAooZ6Eo6ADuloejweHjxwN1deRVoxTU08uaQf8nM+ulEx49BFgLTXN2CBCmg6lXJL2wF9HnScqDu74DlCWnm7GFhESGrSeAGkwuvGT9iBQB4UnIrp5GkJIM6C50aRdCHRdj4xunnYQEmJBj9ANGzoYc6++HL169kBERARYVjpYzXEcevQZEuyhSCvAsazP1Eq68ZO2JND5TCPSpC2hOXSkPQh4XafnGBKmggrozptwDl5/5XmwLIvTpwtw9Fge3G53qNpGWiGf8yxAF0LStgR6kKURadJWcKD1RUn7EPi6Ts8xJDwFFdDddssNsNvtuPWOe7B+w6ZQtYm0Yr5u+gD15JK2hXpySbuhUgOs/AwMOs9JWxIwoKPnGBKmgppD1ykzA4v/WErBXDviN6CjnlzShlBPLmkv/GVeQK0Bx1DdP9I2BLxu03MMCVNBBXSVlVWwWW2hagsJAz6XLAA94JK2hebQkfbC33UdAKCkh1zSNtAIHWmrggrolixdhmHDBkOhUISqPaSV89uTq1KDa76mENKkaISOtBceH0vR1KLsC9JWUCo9aauCCuhee/Nt1NTU4PVXn0dKSnKo2kRaMb89uSwLKFXN1xhCmlDAnlo1PeSStiHQCB2NWpC2gopdkbYqqKIoC3+ZD6VSiT69e+Hcc8aiuqYGphqTZD+OAyacf1EwhyKthL85dADfu8W4nM3UGkKaDvXkkvYiYEBHD7mkjaCUS9JWBRXQMSwLt9uNgoLCs9tkJk/TfOq2I2BqjloDWKVBPSFhR3RjZ6xmcDqD9zU95JK2oj4ddYS0BeJzmbFZwGn1Pt8nJFwEFdCNP29qqNpBwgT15JL2QnxjZy01cNcN6Kgnl7QRXH066ghpC8QddeYaCuhImxDUHDrS/gQO6OhiSNoGcecEY64RvU/nOmkb6LpO2gtJR525Wvg+dV6QMBXUCF1d2dmdkNUpE3qdDr8t/D1UX0taGerJJe2F+FyW3PjpIZe0EQGXLaDMC9JGBLqu07lOwlXQI3S9enbHrz/Nw8Jf5uPN117E888+4X1v4IB+2L55Dc4ZNzrYw5BWgm78pD3gFApAIezvop5c0lb5XY4GdK6TtoNG6EhbFVRAl5OdhS8+fR9pqan4/Mt5WLlqreD9zVu2oaKyEpPOOzeoRpLWI+DkeboYkjZAbvSNenJJW0VFUUh7ETjzgq7rJDwFFdDdcftNAIBLLr0cL73yBnbt3iPZZ/v2nejVs0cwhyGtCM21IO2BXMcEY6kJuA8h4YhG6Eh7IJd5Ibmu0zMMCVNBBXSDBw7Akr/+wYkT+T73KSgoREJCfDCHIa1IwBs/XQxJGyA7QmeinlzSNnHaQCN0dK6T8CefeUEddaRtCCqgMxj0KC8v97uPRqsBq6Bimm1FwBE6Nd34SfiT3NTdLjA2i3Af6rwgbQR11JH2QC5Yo2JXpK0IKtIqKCxCbuccv/t079YVJ0/6HsEj4UUy18LpEL5PF0PSBohv/IzDDsZp97sPIeFK0lEnua5TRx0Jf/WdG80xTDO1iJDQCSqg+3fFKowYPhTDhg6Wff/8iRPQt08v/L3s32AOQ1oR8bIFrKlK+D4FdKQtEJ3HjNMOxiEK6OhcJ22EJ8B1XbwYMyHhqD6ZFwCo4BUJS0GtQ/f+h59i4oTx+PD9t/Drb4sQHx8HAJgzayb69umFKZMn4tSp0/jsi29C0ljSsjjIVIgyVcETk3B2A934SRtQnxG62p5chuOasWWEhJ54hI41VQqu69R5QdoC2eu6qKMO4M93ue2EtGZBBXQVFZW4cu5NeOn5JzHjkou82x99+H4AwI6du3HPff8Hk8kUXCtJ66DWAKxwUFc6Qkc9WyT8iR9gGacdjCgNDQDfk0s3fhLmxHPo2BrRdZ066khbUM/rOqfWAObmahQhoRFUQAcAJ0/mY/YV16Fr11z07d0LUVGRMJnN2LlzN3bt3huKNpJWwiMzcZ41VQpeU08uaQskRSJauCeXYxWAxw2a2UFCjWNZSWYFa6aOOtL2yI3QwSUT0DXTcwzHsoDHQ9d1EhJBBXTPPf0YDhw6jC++nIf9+w9i//6DoWoXaYXkFp9tiVLu9u4D4ejUHerDu6A+sI0uhiTkJDf+FuzJtQ4+F+ZxFwMAIhZ+Ds3eTU17QNKuyFW4bIm50dYBY+Ho2h+q4wegW78UjMvZ5Mck7Yts5gXH8VkWda75zTEibes5BObzZoFTa2BY8h1021Y2+TFJ2xZUQHfBlEko/XJeqNpCWjlJQOdygrEJn2ab+kJo6zcKNRffyP/3kAnQbF+NiIWfS+c3ERIEyY2/BXpyOQDmCZfCOmqqd1v1JTchLm8fWAulsZPQaA0ddbZ+o2C66DoAgKNLP9h7DkXk/P9BUVHcpMcl7Ytc5gXAB3Z1n12a+ny3DhoP09RrvK9NF14Ldd4+KCpKmvS4pG0LqsrliZP5tGh4OyKeOM/Ybc1a+c+jN8I0cY5gm73vSFTc+DhccclNdlzS/shOnq/tyfWzX8iOzzAwTZ0rCOYAAGoNbH1GNskxSftUrxG6Juyo82j1MJ03S7DN1SETFbc8DXv3QU12XNL+iAO12o7g5nyOsQw/XxDMAQAUCtj6j2myY5L2IaiA7qefF2Ds6JFITEwIvDMJe+IbP+OwSdLQmvLGbx4/E5zeKNnuTkpH5fWPwWOMarJjk/ZFLjWn7v+f3a9penJNk6+CbdA5su/ZBowF1dUkoSJZg85hB+OwCbc15QPuuIvBGSKl7dLqUX3p7XCm+1/rlpD6kp1DBzTbc4x1yASYJ82Rfc/WbzQ/p46QRgrq7Fn61zLs2Lkb333zGebMnolevXqgQ0oyUmT+R8KfODWHsVulBSGa6AHX2aETbAPG+nyfM0TAMnJKkxybtD8+b/zN0JPrSuoI25Bzfb7vTkyFq2PnkB+XtE+y13VJx0XTPOC6ElJhHTzB9w4sC8vIC5rk2KT9kU2lh7SjrimeYzyGSJgmXOb7/cgYOHL7hvy4pP0Iag7d30sWgOM4MAyDRx66z+d+HMehR58hwRyKtALyI3RNf+PnGAamKVcJl0yw26CoLIE7Kd27ydG5N/AnzekkwfM9Qtf0PbnmMRcJN7icYGxWcMazoxjWAeOgOnEo5Mcm7Y9kyQKHXCq9GhwQ0gJUHADT5CsAheLsRqcD6sO74Og24OymrO7gFAowbncIj07aI7liV0DzdNRZRk6RVJNlzNWC0WnbgLHQ7N8a8mOT9iGogO7XBYvB0aK67QanrU9Pbuh7tuy9hsElSrsxrPgVqmP7UHnTk95t7oRUuKPjoagsDXkbSDvjMzWnaXtyXQmpcHQfKNimX/EbGLcL5jrzjOw9BsPz+1dg7daQHp+0P9K50VZAXNFVoQAUSsDtCtlxHbl94MzuKdimX/M7dBv+QlmdgI7T6OBM7wx13v6QHZu0T75H6Jq2o85jiIR10HjBNu2WFVCePATTtOu92xyd+8AdGQNFdUVIj0/ah6ACuocefiJEzSDhQNKTa7cBjqYfsbCK5hIpSgugW7eEX5dL1MPl6NwHuk3LQt4G0r5IJs83U8qlZcyFgpFoxmqGbv1SQKWGefwM/qEaANQa2HsPp3OdBE2acikdoQP4vwkmhAGdTfSAy1aVQb9qERinHcrTx+Dq0Mn7niOnNwV0JHg+Rugkxa5CfV0ffr7w2G439Ct/A2uuhvn8y8/+DbIsbP1Gw7Dit5Aen7QPNAOT1JtHJyxIwtgs0hELhZJfBDlE3LGJcGV0EWwz/P09GLcLDMdBfXiX4D1HTq+QHZu0X5KOiTM9uE3Zk+uKS4a951DBNt36pWDtVrCmKqgPbBO8529OKSH1Va/rOkJ7rnsMkXDk9BZs0//7q/e46kM7Be85O9N1nQTPd1GUpqte7NEbYR0snBOt2bEGiooSMA47NDvXCd6z9R8DjqHVdUnDhSSgi4+Pw5xZM/HwQ/fh2ace9W6PiYlGr149oNE0/SKNpOl5IoRVJFlTZZPf+G19RwleM6ZqqPeffbAV3/gdWT3AKYIaeCbE5xy6puzJtYwWjc7ZrdCtX+J9rd3yr2B/V4dMuKPiQnZ80j5Jr+tV8tf1EJ7rtj7DhXPnHHZodq33vlSJOupcKZlwUxVjEqT6FkUJ5dQRy/DzgbppzW43DCvPjsCJr+uemAS4kjNCdnzSfgQd0M2ZNRPLlizAow/fjyvmXIqLp51dNykuNhbzv/kMF06dHOxhSCvgiYgWvGZrqnym5oQCxzCw9RWuuaXdtRaM5+zkePXhXYDHc3YHjRbOjNyQHJ+0X83dk+vRGWHvPUywTbvhL7BWs/e1+vAuMJYawT7OzK4hOT5pvzzGaMFr1lTJFyARpVeGKqDjIO2o0+zdBLbOUgmqk4fB2ITzQ52UfUGC1NxFUTiFUpJarNm5ForyYu9r5eljUJQWCPZxdqLrOmm4oAK6cWNH4dGH78fBQ4dxy+3/xbfzfxS8f/jIURw4eAjnnjM2mMOQVkJy46+plKSgAaG7GDozu8ETLVy4XrNttbANlhooTx8TbHN07hOS45P2q7nXobN3H3h2fhwAOB3Qr/1T2AaOg0o0j8iZ2S0kxyftl6SjrroSgDS9WDz/qLFcyRlwJ3cUbNNuWyV4zXjcUB3dLdhG6fQkWJJnE19FUUL0DOPI6QVOZxBs069cIHjNAHRdJyERVEB33dyrcLqgEFfNvQn/rliFsrJyyT4HDx5GTnYnmU+TcMJB5sZvquR7ccXlpEN04xePzikKT0BZeFyynyTtUjQ3g5CGqvcCtCG68dt7Cpd1UR/YDlY0GgdIb/wO6sklQZK9rkNu1CJEnRf9hKNzbGUpVHn7JPupD4nmR2f3orlFJCg+R+jEKcYheoYRX9eVxw9AWVYo2U91THj+OzO60LlOGiyogK5b11ysWLkaVqvN5z5FxSWIi6N5HuGO0xkApUqwja2pBIOmecj1qLWw9xgs2Kbdvkp2HST1YWFA505KgzsyNug2kPaJYxjJcgRNWeXSY4iEs1N3wTbt7vWy+6qPCQM6T2wSneuk0TiGgUc0N42tqeT/owkKAHEKBWzi1OLtq8HILH8kvq5zhghB5UtCGsrnHDrxdT0U57pSBUfX/oJt2l3y13VxRx2nMwjW2CWkPoIK6BiWhcvlv4xxXGwMHA5pWh4JL+J0S4CfPA80zbwiR49BkjK/2h1rZfdV5h+RzC2itEvSWHJBWlP25Nq7DxIUQ4HdBvWhHbL7KopPgrGYBNtoHh1pLE5nFKb64mxAJ00vDsF1PbefYJkZgO+ok6OoKoOi+JTw850p+4I0Xr3nRodgNNrRuY9wSRCPB5q9m2T3VdRUgC0rEn6+E6VdkoYJKqA7duw4BvTv5/N9hUKBgQP74+Chw8EchrQC4rQcxlJzdk2iEF8MOYaBZYSwkI768E6w5mrZ/fnlC4TzLWhSMWk0mSDN9whd8Dd+ey/hUgWaA1tl56YCPubR0Y2fNJL4ug6PB6zZR0ddkAEdB8Ay6gLBNuXxA4ICEWLiZWlobhFpLNnMi9rrbBNkGYnTLVV5+72d4HLUeeK0S3qGIQ0TVEC3cPEf6N6tC2675QbpF7MsHrjvLqSnpeLXBYuDOQxpBeQqXNYKdRqao2t/uBPTBNu0m5f7/Yw0B70rpEk8hATWkBG6YEej3RHRcHYUVmXV7N7o9zOq46J5dPSQSxpJtqPuTNVgaRpacJ0XzpxecKVlC7bpNv3j9zOqY3uF35GeA04RunVOSfvh97oe4o46TqWBvYtwsEPjI42+lrQwCs2jIw0T1IJdX38zH+eMHY3bbrkBUy84Hw4738vxxqsvoGePbkhN7YA1a9fjx59+DUVbSQvyNXEekJtD1/iLIYcz63HVoSg6CfXB7X4/J37I9UTFwhOTAEVFSaPbQtonSZDm8ZztwQ1xT669+2Dh2nM2i2TukJj62D6Y67z2xCXBHRkDRXVFUG0h7Y9c5eJaoZwbzQEwj71YeKyyosAPuScOijao4eqQBdXJQ41uC2mn/GVehLijzt6lr2TKiK90y1qSeXT6CLgT06AsOhlUW0j7EdQIncvlwnU33oYPP/4c0dFR6Nw5GwzDYOJ54xEVFYWPPvkCt9x+d6jaSlqQ/xt/6C6GzpxecKVmCbbpVy6QnTRfl6K0AIwonYFSFkhjSM5fp8NbjCeUPbkcq4C9n7CSq3r/VjAup9/PKYrk5tHRKB1pOL8ddeI1RoM4151Z3eHq2FmwTb9ygXc00BfWaoai8ITwuzK7NLodpP3yn3kR2s4LW7/Rgm2qY3vAiq7ZYoqqMrCi9GOaH00aIqgROgBwOl1446138cZb7yKrUyaioiJhMplx5OgxeAJcrEn4kKZcVnr/WzLfJ4iLoXnMRYLXirJCaHZvCPg5fi2XA3D0PFsZ05nZxeeEe0J88bUGnfi/gcZ3XnAMg5pLbpJU7Qs0YgGcmUd3/AAc3QZ4tzkzu0K7U75oECG+uEXXdYW/EbogOuos4tG5ihJod6yp12dVxw8I1q1zZnQFVi1qdFtI++Qv80LSeaHWgGOYgB3JkmMAME+cDaeoeI9mV+BnGIAfpbPHJnpfOzK7Qbfhrwa1gbRfDRqh27D2H1x/7VXe17fdcgMGDjibJ3z0WB62bd+JQ4ePUDDXxjSkJ7exN357twFwZQh7X3WrFtX7oqoWzy2iETrSCL4qoQGh6cnlGAamC6+DXVS+na0shfrIbh+fEqLCKCQU/HfUhWZutK3PCMlIg37lQjAet49PCEnO9Y65NLeINJjfzAtx9WIAUDZ8RNoy5iJYRQXdGKsZmn2b6/V5SWGUzC5UC4DUW4NG6CKMRmg0Z/8obr/1RgDA5i3bQtsq0mzsXfrB3m0gVCcOQrt1hew6bwB8r1WExpX85RQKeAxRYK1mME477N0GoHrm7cJjVJZCu2N1vX4OgB+hE7Q5LgnuiBgoamhuEeF5dEbYBo6FR6OHbvM/UFSWSvbxO0LXgJ5cR2ZXmCZfCSiU0K9eBM22VYBCAdMF18A2YIxoZzsif3wXjLueD7miIkDuuGS4YxKhqPBdMZC0H47MrrD3Hg5l4QloNy3z2SnmL6CTVi8OHNBxShXcUXFg7VawpirYeg5FzcU3Co9RWdqgzAnVceF1ndPq4EruCFXB8Xp/B2nbOFYBR7cBcEfGQLN7g2Ck2btPQ67r4J9j5AI9Z0omTFOvgUdnhG79Uug2/gVwHCxjLoJl/Azhzm43In7+AKzNUq+fQzKPzhAJV0oGneukXhoU0JWVlSMpKTHwjiQsWEZNhXnCpQAAe//RcMenwLj0O9l9/d74JSN0Wp/HdCV3hHXAWNh7D+cXK3e7oCw4DldKJiCqXqZfubDeD7jAmTW6rGb+e89wZnSBoh5pbKR149QaWEZOgccQCe2WFVCdPtbg73Bk5KJmxm3wRPELcdt7DkHMuw+Dddgkx6pLOELnoydXtN2ZkomqK+71ToyvufhGOHJ6w2OMko6muZyI+vYNqE7Uv9CDsugEGFMVuDodLfZuA6Bf+0e9v4O0TdZ+o2G6+GzlaVdKJoy/fSzbWSeZG93IzAtXUjqsA8+Bvc9wcFo9AH5eszsmUbjGIgD9v7+eXfKmHhSmKv674lO825yZXekhtw3g1BqYx14Md3QCtNtXQROg+JkcV3wKaqbf7J17bx08ATEfPCYJohp6XefUGkC0vq0rNglVVz8ATm8EAJinXAln515g7DbJ8jMAEPHLh9AcqP+Ah6KyFGxZETxxSd5tjm4D6Vwn9dKggG7Hzt24aOpkeNwelJTyPduDBw0I8CmA4zi8+/7HjWshkeUxRsHebSBcHTLhSu4Id0wilAV5MPzzc70qgFlGTPYGc7WsI6dAWXxK0nvKqTXCBTIhDOjEk309kbGS47ljElEz7To4O3UXvqFQSkpZA4Bm+2pot/hfqkCM4TioThyEo065YGdmV2gpoAtrnEKJyqse8BZVsA0YB92a32FY/nPAAiIA4FFrYR02EZZxlwgeLj2xibANORd60XwcyY2/gT257ogYVF9+t6SqmtwNH24XIuf/r96plt52cBw0+7fCNnDc2e+ngC7sebR62LsPgistG860bLgTOkBRchqGf37iC+YE+LytzwiYLrpOuG3AGCiKTkC/fqlgOwf/y9GwZuHDbG1HSF3u6ATUXHgNnDnSBb/rBmC1dOv+hHbrigA/hZTq+AFhQJfRBVi3pMHfQ1oPjlWg6vL/ep8JHD0HQ7t1BQy/fy3pZJP9vEoNa/+x/HNMnWutJy4J1mGTYFj+s2h/39d1cfViuf09Wj2qr7jHG8zVcuT2lW2fceHnjZrXrNm3GdaRU7yv7d0HwvDPTw3+HtL+NCige+nVN5CZ2RGXXXoJAD5QGzxoQMCgjgK60HLFJaPy+sfAGSIE253ZPVGZ3RPqvZth+Pt7KEsLJJ/lWBbW4efDfN4s2e+uuXAuFOWFgtECt6gXFwAUdXpyxWle7uj4s8cDYOs/BqbzrwA0vkfu6tJuXg7jws8aPCEZ4FMWhAEdVUQLZxyAmqlzhRXyWBbWURfA0aUvdGv+gProHiiqyoSfYxjYew6FvddQOLJ7+qzQZxk+GboNfwkCNcmN3xHgxl+nJ5dTaVB9+X9lOzUkHHZE/vReg3pw61Lv3yII6FzpneExRII1Vzfq+0jLckdEo/KGx+Gpc/0EAHdyR1TPuRuqI7th/OMbKIvzJZ/lWBa2vqNguvBayYgYAJgnXQ5lyWlBxwGn1Uv+Lup21CkqhUu+uKMTzn6WYWAbeA5M582q93Vdt34pDH98EzAolaPK2w/bgLHe17XrjNJMuvBlnjhL0sFr6z8Gjoyu0K9aCNXxA1CUFQp+xxz4AMredyTsuX1llyIAAOuwSdCtXwLWenaBF78jdBzHX9vr/D3UnTrCsQpUz7pTtpNCwuOBYck86DYtC7yvDM2+LYKAzp2YBldcMpRlhY36PtJ+NCigO3EiH1OnXYa0tFQkJSbgq88/xC+/LsQvv1HFqebCKVWovuwOSTBXl6P7QDi69od26wrol/8MRU0lPIZI2HsMhmXEZHhiEnx+FkoVqmbfBeOiL6DZuwkMx0kXn7VbBRdDVnLjj+cn8iqUqJ5+i6DyZCC69Uth+P2rRt+oxfMt3Ilp8OgjwIpSJ0h4sA6bCHv/0bLvuRPTvKllipLTfO//ln/B6SNQfelt0tFgGZwhAtbB50K/evHZbQ1Nzalz46+5cC5cHTIDHpetKkfkvNeCSqVRH90Lxm49O3rOsrB36QddI0ZASMviWBY1M26VBHN1ObN7ouLWZ6HZsQaG5b+ArS6HKykNji79YRswVnYEzYtlUX3p7TD+8Q00O9eC8bgl6ZaAMOWSFa3hyemN8Gh0YNwuVF92h6DjLBDthr+Cu65L5hZFwJ3QAcqS0438RtKSbH1GwDpskux7nrgkmKZdDwBgTFXQbfiLvz6zCtRcfAPsPYcE/H5Oq4N1+PkwLPvx7DY/mRe1rwVBXJ39zRMuhTOrR8DjMjYLIn54F5pDOwLu64sy/zDYmkrBc5ej2wAo69yjCJHT4GULOI7DyZP5OHkyH6dPF2Df/oPYtHlrU7SNyDBNmiMo4ewTy8I2cBxsvYeDcdjBGSN97qo8cUgwAsIZIlFz2R2wnjoKw5Jv/RZEASBdvFutAWeMgr37INlgjq0uh3brCmh2rocnKhbOzK5wR8VBfWQ3NDvWBNXrqjydB9htgl5jR6du0O7ZGMS3kpZg79wb5olz6rWvO6EDTBdeC9vAcfDoI3w/GHs8YCtKBHMULCOmQLfx77OBm2jUQpByKduTy9/4XYlpsPcZIfisorQAkd+/jZopV3kruCpPHkbkt29AIVo3saEYlxPqQzsFDziO7gMpoAtDlrEX169SKcvC3m8UXyHV7fY5QgEAylNHBWt6cjoDai65EeaxF8Hwz8+S6zhjMQlSmBWVpXxp97ppyjEJcCVnyAZzbE0ltFuWQ7t1FTw6A39dj02E6sQhaHatC+q6rqgqA1tZKvi7dmT3pIAuDDlTs1Bz4bX12pczRsEyfob3fPf37MNWlAg6q61Dz4Nu7Z9grfyUEL+ZF2dec/qzHeW1+7sjYmAdcp7wWDWViPzmNT7Qy+4J4My1ft7rsplRDcFwHJ99MWi8d5u920BBpyMhcoJah278xAtD1Q5SD/Yeg2EbfK5gm6K0ANrN/wCsApYRU6Qjd2qN38nshqXfQbf2Dz6XvXMfwXuu1CxUXfMQ1Id3CbazogdRtqYScDkBpcq7zR2TAGfHXMnxtJv+gXHJvLMX09LTDZ4/5A/jcUN18hCcOb2828znzYL68E6w9sB5+aR1sHcfhOoZt0rSxwx/zoO993Cfo2Didd283C6oju6B4d/fAJcTlbc87X1LPEoX8MbvoyfXUidNBuDLVUd+8xqUZYWI/vRZuFKzwClVUB0/0Kh0YjnqfZuFAV1WD3g0WjrXw4gjuycso4X3UraqHLp1f4Bx2GEZM006+qZQ8v/zgU9v/Bo1M2+TjGh4YpNQM+MWyahX3dE5AGDcLn6koM6x3TEJcKZlQUy76R8Yln7rPe8UlSVQFeT5bF9jqPL2w953pPe1Zdwl0OzbIkm3Jq2XI7Mrquf8V9JpZvjre9i79IVL5pkBANwJqfJf6PFAlbcP+pULwFZXoOL2F7z3DE6jg2XEZBj//p5/7SfzApDJvjizv3XYREBZ52/N5UTkvNehOn0MUV++BFdqFjyGSKgP72xQETd/NHs3CwI6V3oOVewmAQW9sDgAxMfH4bxzz0GnTpnQabV45HH+YSkmJhppaak4ePAw7HaZ6nCkXjgA9j4jYLrgauEbDjsiv33D20up3fQPrCOnwDJskt+eW4AfJTAs/9kbrEV+/w6qZ/9HmlbAsnDkCgM9Sc8ux0FRWSrIL3dHJ8CdIMw31y/7EYYVvwX4aYOn2bNRENB5YhJgmnI1In/+oMmPTYJn7T9Gdi6Q/p+foF/7B3Trl/Jz47r0gyOru6BXVYytKofh7++hPrBNUPVMfWCbYJTBfO6lcMelQP/PT7LrFdUl15PrjoqTFD3RrV/inffAcBxU+Ufq9w/QAOqDOwCX6+wDh1IFR05vGpEOAxwAe+/hME25Sniuu12I/P5/UJ08DADQ7lgLy8gpsAw/P+B8NWX+EejW/gHN7g1gwFfZ82i0ks46AJK14cTXdYBPpxcHdO74DoJ9dCsXwPj3D/5/2BDQ7F4vCOg4nQHVM25B9GfPgaF1b1s9e25fVF92hySY065fCv2qhdCtWQx7r2Fw5PaFMyPX7zxkxmqG4e8foNm7STBnWLNrnSBLwjp6KjyRMXzqpb+iKJBfY9Sj1cM28Bxhe7euhOrUUf4zTXRdV+Xtk1TsdnQbAN3Gv0N+LNJ2BB3QzZk1Ew/cdxfUav6PlOM4b0AXFxuL+d98hsefeh4//PhLsIdqVq7kjjBNuAys1QTGYuL/32oGlCp4dAZwGj0Yl+PMe2ZwSiU4jQ6cWgvG7fLOM+PUGni0BnBaHRinA4zNAsZmBZRKcFo9X+Kf8wAuF1/KmWHAsSzAMGAcdrAWExzZPeHoPlDSxohFXwhSTli7FYZlP0K78W9Yxl0CW/8xwgcFhx3qo3ugW/sHVHn7BSkwrN2KqM9fgKPbQJjPnQl3gvCmXZe4Jxfgb/yCgC42Ea44YUAnnt/WVLRbV8DWd6RgkXJ735EwlxVCUV0Oj1oHTqPl/+2VKjAOK/97cdjBafXwaA2ASs3/Dq3mM9t1Z35fGjB2G7+/y8mfCzojX+nQagJrrgZjt4EzRMITEQ2PRsevtWep4Ud2dEZ4jFHg1Bqw5mqwNZVgbBZ4jFHwRESDU+vAmqvAVlfw2yOiz2zXgjVVga2pAGOzwhMZA09UHP891RVQVJby+0fF8XMYNVqwNZVgK8vA2q1wR8bAExULTqUBW10ORXkxWJsZ7phEuOOSwWl0YCtLoSgvBmMzwxOTAHdsEjiVBorKEihKC8DYbXAlpcGV1BGcRgNlaQGUBcfBWGrgTuoIV3JHcBodFKUFfFl9qwWupDS4k9LBqdRQFJ+C6tRRMHYrnB07w5mWA6jUUJ46CvXhXeCUKliHnCtbMU+zfTX0ZzoDGI8b2h1roN2xBhzDwJnVA6bzL4c7MU3wGVXefkTO/59skRD98l+EaWMsC9uAMbD1GirpDAl044daA+vwScIRE4cdug1/+T1PQ4G1W6E6thfOzmf/zcwTZ8PRfRDYyhIoKkqhqCyBR2uAKyUD7qQ0wO2GsugElKePAwoFnCkZ/L8dx0FRcgrK4lMAw8AdnwJ3bBLAeaAoK4KirBCcQgl3Qge445IBj9u7HQoF3LFJfEqcx82fSxUlgELJBwFR8WA8LigqSvi5WawC7uh4eCJj+DRYUyVfYVGp5M95QxT/PaZKsKZqfrsxmk//drv4vwVTFaBQwGOIhEcfwX+PpQas1QROpT6zPRKMy3nm+ysBhZLfbjizv83MX49ZFpxGB49aC8btBGOzgrFbAAV/nfZo9GA87jPXdRvAKsCpNPxIrcfD3wtcTnAKJb9Npeav6Q4bf/4wDDilms9icDnB2CxwpWbB0U1aUMzw1/feYA7gzz/D8p+h2/g3LKMugHXQeMFDsaKsEKoje6DdslwyJ5NxOhD11StwdO4Ny9iL4UrP8X0uyQR0iooSwXXUHZ0gKQyhOtXwJUQaQ31wBzQ71/Hpd2e4MrrAdME1/Gij28X/vpQqQKkCp1KDq/1/rQGczgBOowNjs4C11PDXOa2Bv1ZrdWDNNfw101IDTqOFR2fkr5fmKigqy8BYauCJjIUnJsE7L5utKgNjNfPX3ZgEeIxRYGxWsNYa/r6hM8BjiOSv0zWVYCtLwZqrwekj4I6IAafVn22P086nixuiwGm1YE3VUFSVgbFb4Y6OhzsmEZzOAEVFCRQlp6CoLIMnIpr/O9IZ+XZWl4OxWfm/uZgEcDoD2KpyKMqLwFpMcMcmwp3QAR7v95zmR2FjEuCKSwGn00NRWcpf761m/hqQmAaPVgdlyWko84/wczdTMuDqkAVOb4SirBDK03lgTZVwJaTCndwRnFoD5ek8qM5k39gGnwt790GSpYlUh3fB+Oc8AADj8Zy9roNfbsM09RpJFWxF8Sk+tbG8SHKO6P/9FfZewwTPPfa+I/lR6joZRIB8ymVdnEoN26Dx4LR1Knx7PNCv/T3AmRo8xu2G+uB2QXBqGXMRnB07Q1FeBEV5MRTlReAUSr7KeWI6OJaForwIypLT4JQqbwV0gIGy8ASUp4+BcTnhSkyDO6EDOIaForyQTxH1ePjzNyYBHBgoqsvAVpbx1+/YRLhjEsB4PFAUn4Ky8AQADu6EDvwzHsNAUV0OtpofPax9ZoHHDbaqDIrKMv7+EMN/DziO/1uorgBY9sz1PpLfbq7ir/cse+Y6HclnCtTeHxjm7PWb4/hnK5sZYNgz12kdGM7jvX5zKg3/92eI5NtjruGfxdwucAolfz663fx12mE/8z8b1Ae3h2XBpaACunFjR+HRh+/H7j178c57H2P0qOGYdel07/uHjxzFgYOHcO45Y8MuoHNHJwgeklobzfbV0PhYnFVRU4mIBZ9Cv3IhnGnZYNwuKIpOQlFR7DfViwFfMleVtx9lD7wjWy0N8H3jr1tA3pnZVfJgHGxueX0xHIfIH99DxW3PeddEAiBd9JMERa7XHwCQ62N7l36wyn1PZldYR0z2eRztxmUwLv5C9txlOA7qI7sR8+4jsA6dAOuw88FpdNBu+huGZT+B8cinwKhOH+MD//6iBb5lRrYDpea4o2JhHTBOsE23dYVkOY+motm3WXCt8kTHw+6nuAYA2UACAOBrO2kW6v1bofOx9ARrrobxz3nQrfkdzuyeYCw1UOUfCXieMQA0h3ZCfWQPyh54R9DrL/h+mTmd4vnR7uSOfBBed5/S5pnHxgAwLvwMzrRseGLProdrGzhOUO21rZNb5qdR35PeWXa7r4VgXB1zgTqVRr37Z3YFZC4bjty+wNhpPo+v3rsJkT+8K3uNZgCoCvIQ/dGTsA6ZAMvoi8DpDNDsXg/jos99ppQrywqhW/en9H4iCub4houyxkQddR69EVbRFBfN3k1QlAurejcVzb7NgoDOExENe+/hjfouZ1bgAmHkDLcb8U9e09KtaJSgArrr5l6F0wWFuGruTbBabejRvatkn4MHD2PggPpXw2otPD5ueq2BZvtqRCz4NGAPgqKyRFJ6uj5YqwnK/MM+89l9BXR1OTOE5wJjNYMJsghEQyiqymBc+BlqZt7WbMckoadbuQCGv38IeK4zHjf0a/+Ebu2fAKvwGcjVZVzwKdjKMlhGTPabyhaoJ9c6YoowEHS7fT6UNwX1/q3AlKslvd8kvGh2rUeEjwXA61LUVEKxfXWDv5/xuKE+vEt+PUTU87ouDgLcbihkRkqaCmu3IvLHd1F53SN+5xCS1k2zdSUiFnwSMFWW4Tjo1y+FbsNffJaKXa5LUMiw9Duw5mpYRl8o6NCVfHeA67pt0DngRBW+dauar6K7+tAuSYE30vQYhy0sR+cAQH4Ipp66dc3FipWrYbX6noBfVFyCuLi4YA7TIsSLR7YGjKkakd++icifP6jXgsrBUB/0XXZXridXXOJaMIkYfC9uc/+RaHeth6YRDz6k5TEWE4wLPoWxHsGc4HNAvYI5gE/xMfz7C+LevBdqP3POJJPlxT25opu+Zvd6vkJgM1GYqmBY9gNf9ZCEHcZUjcjv3kLkD+/ILlwfSmo/5dR9zaETEHUaKCqKQ1YIor5U+UcE5ehJGHHYof/nJ77jogHzHhmOq1cwV7uvfvVixL5xDzTb5LOYAPllC+oSz+FTHdkd8kI//jBOO4x/fM0XnCPNpqmvwU0pqC4uhmXhcrn87hMXGwOHQ7oYb2unOrYPhqXf8Xn0OgM8ev7/4XKeydu18rn5eiM8Wj0/b852Zn6FonY+nQZw2sFaLXw+r1LNz8PS6vjvsZ1Zz40BP/dCoQLDefhS0eD4OR06A6BQQnX8APSrFzfbosHqgztgOXem7Hv16cmVvF/SPOmWYhELPgXjtMOR1ZOfA+Ow8XPgav/f7YRHU2d+nM3K/36ddu+/P6fWgrFb+N+jw87Pr9DqwanUYG0Wvty3w86fC8YocBotmNr5GDYLv68hgv9+85l5dk47nwseGcPPXzNXg60uB2O38fPpImP5eXDman4+nd3K55rXbq+p4udv2K115s3pwNZUQFFRws+ni4yBOyruzPZKfj6Gw87Pr4hNBKfW8vMlyov4+RIxCfx8OrUWiqpSKMqK+P3jkuCOT+G3lxZAWXgCjM0MV1JHuFIywGnObC84DtZi4nP0k9PP7l90EnDY+Jz+DlngVGooC09AdeIg/7vJ7sWXV2dZKE8dhW7D39DsXt/knRa1WFMVIn79GOWduskWWAnUkyumX9P0cywkx1y9GJoda+BKzoAnOp7/XUYnwBMTD3d0PBiXC8qik1AUHgdYBT8HJqkjGM4DRdEJKM/MvXInpsGV0IEvdFRaAEVpAcCycMelwB2bCHg8UJSehqK08Mz2ZLhjk8B4XGDLi/l0JIWCP/aZ+XTeeXNKJdwxifBEx/Hz1ypLoagq5+dFRNSZH1dTyXcasYoz2yMBV53tCsWZ+XRn5kWYqvnrokLBX6/1EYDLwW+3VINTqr3fz7hdYEzV/LqUDANOa4BHqwPj8Zyd93xm3hx/nXbxf+N2C9+e2nnSHjf/AOh0npkfx8/bwpntjNPBf49a690fLic/d0Op4r9fpYbq5GHo1i9ttnUy1Yd2+nxPbm504Ot6yywboFu9GIzDDnv3QeDUGu98GMbt4v+dXU7+/538fzM2M39dt1v5a7o+Eh6tnp9Daa4Ga7fy89ciYuDRG8HYa+8DDn6eWlQcP2/OVMmfz6Yq/vodFcvPU6up5OclV5fz8+b1EfyIkpX/fsbp4K/H0QngDBFgzNVQ1FSCsZrAafT884VaC9ZqAmuqAuPg7wPuyFhwWj0/D66iGKzVDHdcMlxJafAYIvnjVpaCsZjAGSP5/TW6M/ufmTcXnQB3XBLfzopSKEtPgzHX8Nf1xDR+Pl1lKRRlhfz3xybCFZ8CTquHorwYyuJ8fs5nSiacadn8PL7SAihPHYWiuhyuxDS4OmSC0xr4OVyFJwCXE86sHt5qxGxZEXSb/oZ260pBcaqmxFpMiFj4GZyduskuYxOwyqVIS1zXdVtXQHNgG5wdMuGJTeLns9X+f0wiwHFQlpyZ1+Z08HMe45IBAMqik1CePgZwHFwpmXClZAAMC0XpaSiL8gGPm79+xycDYM7Mey4GOI6fKxoVx8+fLi8GW1EMKNVwJXeEKzGVP25ZIRTFp8C4nXBHxnoDYLamgp/vplDAHR3Hf4+Hg6Ki+Oz3R8TwHaG18+lMZ+bHGaPOXNc9Z6/frBKeiCh+3UzOwz8Tmfnrt0drAKfT89utFjA2Cz//Tqvn56e6nGBN1WDMZ+bl6SP4SvAMy8+5dbsBhYK/hpy5VjfXM3ZTCCqgO3bsOAb0951OqVAoMHBgfxw8dNjnPq2V6vQxqE43z2Tv1khZeBxsdYVkvgTgI6ALMCKhbKZ5FmKMy4mIhZ+3yLFJ/Rj++ZkvRsFxAW+qTYW1W6FfuQDmSZdL3gvUkyt4z1wDReGJkLevPhQ1lVDI/G0SUos1V0OZf0R2HpbsCF11ubCKqoiimeZFizEAdBv/pqp/rZxHZwRYli9EEaKlWhqCcTlh+Odn1Fxyo/S9hnTUuV2SZT6aC2uuhkamI6b2XzNc0wNJ6AWVcrlw8R/o3q0LbrvlBukXsyweuO8upKel4tcFtCBiuGHgIz3H5QRjlU7CZyw1fL63Dy3Vk0vCA1tbDbAF6TYuAyvTMdGQnlxl0Qm6wZJWzVfapVxAx3AcWD/rvLVURx0JD2xt5ecWCOZqaXashqI4X7I9YPXiOhSlBc2WMVJfDCiYI0JBBXRffzMfmzZvxW233IA/F/+MiRP4hRDfePUFLP39F1x5+SysXbcBP/70ayjaSpqZ3Dw6XxNGGcBvAZaW6sklpL5qe3Ml20VzN/z15CpbaHSOkPpSH9guu511yHfI+b2uU0cdaeUYjoPhb+mcS0Z0vvvtqKPrOgkDQQV0LpcL1914Gz78+HNER0ehc+dsMAyDieeNR1RUFD765AvccvvdoWoraWaqo7sl2/wt4uxzvoXLxedOE9LKaXas5ucdnMFWlkJRckqwj7+eXLrxk9ZO2cDCDv7m0VFHHQkH6v1bBCmTjN0qWRCcOupIuAu67q/T6cIbb72LN956F1mdMhEVFQmTyYwjR4/B4/EgLbUDbrv1Rjz08BMhaC5pTnJrvbBlvktU+7rxK8oLG1TRipCWwnAcor54Cebx08GptdCvXChJF/Lbk1tAN37SujEcB7a8CJ7YpLPb/CwpI6l0WfuZM0WfCGntGACR816HeeJseIxR0K1eJA3gqKOOhLmQLuRy9Fie979TUpJx683XY9qFU6BQKCigC1PGBZ/CdOG13te6rf/63NfXjb+lKlwS0his1YSIRV/43sFX1V6XC4rSU/LvEdKKRCz8HFVXP+B9rdvyr899fXXUKWl0joQR1mZBxG+f+HyfRuhIuGtUQDegf1/8545b0KN7V7jcbmzZsg0vv/oWjuUdh1arxV133oI5s2ZCpVKhuLgEH3z8WajbTZqJdusKuDp0gr1rf6jyDkC7cZnPfX3f+GmeBWk7fI3QKUpPN/uaXIQ0hvrIbhiWfAtbnxFQnT4G3WrfCyb7zLyg+XOkDfF1XWdrKsO6lD1pPxoc0PXo3hWfffwuVCqVd9u4saPRs0d3zLnqerz39mvIyc5CcXEJPvrkC8z/4Wc4na2rOhCpP8bjQcSCTxGx4NOA+9KNn7QHvm781ItLwol+ze/1WlvL53WdOupIG+Kzo46u6yRMNDigu/7aq6FSqfDaG2/jx59+AwDMnHEx7v7PrZj35ceIi4vFex98gvc//DQsFxQnjcf6vPFTag5pO3yl5igLjzdzSwhpeoy5GnDYAbVGsJ1SLklb4vu6TgEdCQ8NrnLZv18frN+wCR998gUqKitRUVmJDz/+DBs2bkZ8fBxefu0tvPX2+xTMtUOswwbGXCPZTimXpC2hETrSnvhakoYyL0hb4qt6MV3XSbhocEAXGxeLPXv3SbbXbvv1V9+5+KTtE9/42aoyv5ONCQk3dOMn7Y0k7dJhB1td3jKNIaQJUOYFCXcNDuiUCgWsVmk5e4uFX3y3ssp3+WPS9olv/JRuSdoauRs/W10O1mJqgdYQ0vTE6fTK0gLJch6EhDVfc+jKCpu5IYQ0TlALixMiJp5ArDx1zMeehIQnuZRLRSnd9EnbpRItRq48dbRlGkJIE5G7rjOmalpDl4SNRi1bMPWC89Gnd0/Bto4d0wEAH773pmR/jgNuuvU/jTkUCTO6Lf/C3ns43ImpUJQVQrfxr5ZuEiGhJTNCR724pC3T7N4AW99RcHbqBkVZIfRrFrd0kwgJKblUekU5XddJ+GhUQJfRMR0ZZwI4sVEjh0u2cZSa0W6w5mrEvPcIPFGxYKsrwLhoyQrStsiO0JUXtUBLCGkejNOBqM+fB6ePAGMz03qLpM2RG4lTlNF1nYSPBgd048+b2hTtIG0I43ZBUV7c0s0gpEkwDjtgtwEarXeb+tDOFmwRIU2P4Th+CQNC2ii2ugKeyBjva82ejS3YGkIapsEB3ekCGoImhLRfDMdBt2kZrCOnAADUezdBWZzfwq0ihBASDO2mZbCMnwEAUOYfgfrQjhZuESH116iUS0IIac8MS7+D+tAOcEoV1Id3tXRzCCGEBMmw4jeoTh6CRx8Bzb4tVMmVhBUK6AghpIEYAOpj0vU4CSGEhC/10b0t3QRCGqXVBXQGg76lm0AIIYQQQgghLaYhMVGrCehqG71q+Z8t3BJCCCGEEEIIaXkGgx5ms9nvPkxu9/6tJkk4MTEBZrOlpZshYDDosWr5nxg1blKraxsJT3ROkaZA5xVpCnRekVCjc4o0hbZ6XhkMehQXlwTcr9WM0AGoV4NbitlsCRgdE9IQdE6RpkDnFWkKdF6RUKNzijSFtnZe1fdnYZu4HYQQQgghhBBCmggFdIQQQgghhBASpiigC8DhcOB/73wAh8PR0k0hbQSdU6Qp0HlFmgKdVyTU6JwiTaG9n1etqigKIYQQQgghhJD6oxE6QgghhBBCCAlTFNARQgghhBBCSJiigI4QQgghhBBCwhQFdIQQQgghhBASpiigI4QQQgghhJAwRQEdIYQQQgghhIQpCugIIYQQQgghJExRQEcIIYQQQgghYYoCOkIIIYQQQggJUxTQEUIIIYQQQkiYooCOEEIIIYQQQsIUBXSEEEIIIYQQEqYooCOEEEIIIYSQMEUBHSGEEEIIIYSEKQroCCGEEEIIISRMKVu6AXUlJibAbLa0dDMIIYQQQgghpEUZDHoUF5cE3K/VBHSJiQlYtfzPlm4GIYQQQgghhLQKo8ZNChjUtZqArnZkbtS4STRKRwghhBBCCGm3DAY9Vi3/s15xUasJ6GqZzRaYzeaWbgYhhBBCCCGEtHqtLqAj4UHBKHFZ1q3oFzcCeyu34uvDb8Dpsbd0swghhBBCCGlXKKAjjTI44RxcmHE1ACDdmIN88xH8derHFm4VIYQQQggh7QstW0AapUtUH9Hrvi3TEEIIIYQQQtoxCuhIoxhUEYLXWoW+hVpCCCGEEEJI+0UBHWkUncIoeK1XGlqoJYQQQgghhLRfFNCRRhGP0OmURh97EkIIIYQQQpoKBXSkUfRKUUCnoBE6QgghhBBCmhsFdKRRDOKAjlIuCSGEEEIIaXYU0JFG0YtSLGmEjhBCCCGEkOZHAR1pMAasJKBTKzRQMqoWahEhhBBCCCHtEwV0pMF8VbSktEtCCCGEEEKaFwV0pMHEo3O1KO2SEEIIIYSQ5kUBHWkwcYXLWjRCRwghhBBCSPNStnQDSPgRV7isRQEdIYSEt0Hx4zA8aSKO1uzFohNfg4OnpZtECCEkAAroSIP5GqHTK2hxcUIICVeZxq64p/crAIBhSRPg8jjxR/63LdwqQgghgVDKJWkwn3PoaISOEELCVt+44YLXvWKHtlBLCCGENAQFdKTBfKZcUlEUQggJW5HqGMFrXxWNCSGEtC4U0JEGoxE60p50NOSgc2Svlm4GIU0uQhUteK1R6FqmIYQQQhqE5tCRBqOAjrQXF2XMxezs2wEAKwsW4d19j7dwiwhpOhGqKMFrLQV0hBASFmiEjjSYz2ULqCgKaWOmdrzS+9+jUy5Aqr5TC7aGkKYlHaHTt0xDCCGENAgFdKTBfM2ho/kWpC3RsFoYRSMWgxLGtkxjCGkG4oCORugIISQ8UEBHGkyvoqIopO3TyoxOJOnSW6AlhDQPcQeG3N8AIYSQ1ocCOtJgvtabozl0pC3RKqUPs8l6CuhI26RkVJL50SzDQs1qW6hFhBBC6osCOtJgBl8jdBTQkTZErsJfB31m8zeEkGYgLohSS6OggI4QQlo7CuhIg/mscklFUUgbIpduFqWORbQ6vgVaQ0jTMormz9WitEtCCGn9KKAjDUYpl6Q98PUgm2nMbeaWENL0xAVRalFARwghrR8FdKRBNAodFKz88oV6KopC2hBfFf4yI7o0c0sIaXq+AzqqdEkIIa0dLSxOGsTXkgUAX0SCAQsOnmZsESFNw9fIRIaRAjrS9kSqo2W30wgdaYsUjBIZxs7IjOiKDGNnuDk3luTPR5E1v6WbRkijUEBHGsTXouK1dEo9LC5TM7WGkKbje4SOUi5J2yNesqAWBXSkrekS1Re3d38aCboOgu0jkibh1jXnw825WqhlhDReUCmXixf8gKuvmoPoKPkbAWl7fBVEqUWFUUhb4etBNkWfQQ+5pM3xlXJJVS5JWzM7+3ZJMAfwRa+yI3u0QIsICV5QAV1KSjIeuPcurPjnd7z68rMYOmRQqNpFWil/KZcAFUYhbYe/oK2jsXMztoSQpkdFUUh7keGnsFWgTmtCWqugArqRY87Dk0+/gEOHj2DypPPw6UfvYOkfv+KG669BfHxcqNpIWpFAKZdUGIW0Ff6KQVClS9LW+FqHjgI60pYwYPx2PGtYKgJEwlNQAZ3FYsX8H37GjMuuwkWXzMa8735AZGQE/vuf27D878X43xsvY/TI4aFqK2kFAqZc0ggdaSM0St8PspkRXZuxJYQ0PZ8jdEp6wCVtR6AOCqrqSsJVyJYtOHjoMJ557mWMGjsJ9z/4GLZu3Y7x54zB++++geV/L8Ztt9yAxMSEUB2OtBBDwICO0hVI26Dzc+P3l7JDSDiilEvSHgTqdKY5oyRchXwdOqfTidVr1mHFyjUoLS0DwzBITkrE7bfeiGVLFuCxRx6AVkt/MOEqYJVLSrkkbYS/B9l0QzYUDBUJJm2H76IoNGJB2o5Azyh0vpNwFdInkhHDh2Lm9Gk4Z9xoKJVKlJSU4t33P8Yvvy1Cj+5dMffqKzDr0unQarX4v0eeDOWhSTOhoiikvfCXeqNWaJCgTUGh9WQztoiQpqFkVD6v3ZSCRtqSwCN0dL6T8BR0QJeYmIAZl1yES6ZNRYcOKQCANWvX47vvf8byf1fC4+EXmc7PP4UlS5fhvXdex/hzxgR7WNJCAs2h01NAR9oITYBUM+q8IG2Fr4IoQOC/A0LCSaAROurAIOEqqIDu/XfewMgRw6BQsCgtK8dHn3yB73/4GadOF/j8zLZtOzFm1IhgDktaEKVckvYi8OR5etAlbYOvdEuAHnBJ26L1U+wKoCqXJHwFFdCNHjUcGzZuxvzvf8Zfy5bD7XYH/Mzyf1eiuKQkmMOSFiROubS5LIILJBVFIW1FoAdZSs0hbYXRb0BHHRek7dAr/D+jUFVXEq6CCugmXXAJTpzIb9BnDh0+gkOHjwRzWNKCxAFbmb0IqcpOZ9+nETrSRtAIHWkv/I/Q0XlO2o6Ac+hohI6EqaCqXPoL5jI6piM5OSmYryetkHjZglJboeA1zSsibYV4hM7lcfl9n5BwFamO9vkeneekLQnUQUGZFyRcBRXQTTh3HF587klERp5Nw0vtkIIFv8zHH4t+wj9LF+K1l58Dy4Z8dQTSQsRz6ErthaL3KaAj4U/FqqFghQkMVY5SwWu68ZO2wui3KAqd56TtCPSMQuc7CVdBRVqzL5uBbl27oLq6xrvtoQfuQeecLGzYuBkHDh7CpInnYvolFwXdUNLyVKwaaoVGsK3MViR43dQplypWgzt6PIv3RizBDV0fgYpVN+nxSPsk14tb6SgLuA8h4YhSLkl7oRU9o1hdZsFrWlichKugArqc7Czs3LXH+9qg12PMmJH4/c+lmHv9rZg562ocOXoM0y++MOiGkpYnN5m4TJJy2bRFUaZlzMWIpEmI0cRjfIeLcVXne5r0eKR9kkszq3KUB9yHkHDkL6DTKLRggntUIKTVEE8LqRRlXtB1nYSroK7SUVGRKC07+8cwoH9fKBUKLP59CQDA5XJh7boN6JieFlwrSaugV0mXLCgTpVw25QgdAxbjOghHeyekzsCQhHOb7JikfZJbe0sc0FFqDmkr/AV0AD3kkrZD/IxSYadUetI2BBXQmUxmREdFe18PGTIQHo8Hm7ds825zuVzQ6egPpC0QL1lgd9tQ7agQbGvKoii9YocgVpMo2X5Tt0eRoO3QZMcl7Y/4AdbmssDmtoj2oVQ00jb4W1gcoICOtB3iZ5QqUSo9Vbkk4SqogO7osTyMGzsK0VFRiIgw4oLJk7Bn737BnLoOKSkoKyvz8y0kXOhF6ZQWlwlWtzD/nGXYJuvhGpN8gc92/afH81AwQa3CQYiXOFizuaUBHc21IG1F4BE66rwgbYNkhI6KXZE2IqiA7qtvvkNiYgJW/PM7/v17MRIS4vHt/B8F+/Tp0wv7DxwKqpGkdRBXuLS4amARTSgGAH0TpF3qFAYMShjr8/2cqJ4YnjQx5Mcl7ZM0oLPC5rb63YeQcBUooKOHXNJW6JTC67a42JWSVVLnMAlLQQV0S//6B0898yIOHz6KvLwTeOW1/+GXXxd63x80sD+MBgNWrV4bdENJyxOvQWd21UhGLYCmKYwyNPFcqOuMiLg8LhRZhesg9ooZHPLjkvZJknLptsBOAR1pg5SMKmCqPKVckrZCPEJXKZpDB9D5TsJT0N0Q387/UTIqV2vT5q0YPHxcsIcgrYQ4ULO4auDmXLC7bYL0s6YojDI6RZhuub1sNXaVb8DcLg94t2VEdAn5cUn7JD9CRymXpO2Rmz/ncNsEHWjUeUHaCvFzjLjKJcCPSJtdNZLthLRmVIuY1JtRGSl4bXGZAADWM/9fK9SFURK1qegW3V+wbUXhIuSZDgq2peo7QcmoQnps0j7JzaGjETrSFonTLT2cB2V24fqiclVfCQk3LKOQdMTJjdBRijEJRw0aoUtJSQYAFBUVw+PxeF/XR0FBYeCdSKsWr00RvK4t4251mxGNeO/2UAd0l2XdKnhd46zEttLVkkXFlawSaYYs5JkOhPT4pP3RiuZZ2N0WyRw6uumTtiBCHSN4bXZVS+ZGa5V0rpPwp5PpmDC5quHyOKFkz3YGN1ely0RtKrQKHU6YDzfL8Ujb1qCA7p+lC8FxHCZPnYG84ye8rwPhOA49+gxpdCNJ65CkE64nWGg9CQCSm7/cAuSNNTl9DkYkTxJsW1u0BC7OCZfbiULLSSTr073vZUTkUkBHglaflMvmmmdhVEbh3NRLAAB/nfqRUoFISBmVwpTLGkcl7M20RIdeaURuZG8UWE9I5kQTEmpamekgVpcZNrcVxjoBnbYZ0unPT5uNq3PvBQAsO/UzPjrwbJMfk7RtDQrofl2wGBzHocZkErwm7UOSLl3wusjCB3TipQvqM0I3KH4cescOxfbytdhSukJ2n+7RA3F59n8E2ywuExad+Mr7+rjpgCCgyzR2wQosBCHBaC1FURiweKDPm+gc1QsAMChhHB7bci3cnKvJj03ah0h1tOC1yVXVLKPRsZpEvDDoW+/xj1TvwdqipfBwbiTq0hCljsH+ym1YdvoXOt9JSMg9m9Re242qs1NKmvrarmLVuCz7Nu/r8amX4PeT83DKcqxJj0vatgYFdA89/ITf16Tt0iuNkht/bY+qVTxCF6DK5aCEcbin1ysAgAlpM/D89tuxo3ydYJ8YdTzu6vkCFKzwFH1n76MosRV4X+eZDmJI4rne1xnG3Pr9QIT4UZ9lC1SsGgpG2aQPm6NTpniDOQDIjuyBKemXY8GJL5rsmKR9iVLHCl5XOyrg8NgF25piNHpqx6sF95TsyB7Ijuwh2Gd40kRMSJ2BTw48j/1V20PeBtK+iJdUsrrM4MBJOuuaOp2+c2Rvyd9Ur9ghFNCRoFBRFFIv4nRLD+dGse00AJmiKH6qXDJgMTvrdsG2iWmzJPtdmHENIkVzO344+j62lK4UbDteIyyMkkmVLkkIyI3QyS3R0ZSVLlWsBpd2ulmyfXqnG5Gg7dBkxyXtS4w6QfC6wl7a5GsuMmAxtE5HnD/pxhw8MeATXNflIVofjARFKxqhq80usntsgu1NHdB1jxkg2dYzZlCTHpO0fSEL6BITEzBm9EhMmTwRY0aPRGJiQuAPkbAhTrcstRV6RybEKZd6lXAB8rqGJI5HB0OmYFuv2MGCBwYFo5QsEr65ZAV+zvtY8n3i+XJ6pZEedknQJCN0LmnKJdC0k+cnpl6KOK208JRGocXc3AdkPkFIw8VoRAGdo0RmvmhoA7pu0f0Ro4kPvGMdE1JnYELqjJC2g7Qv4s5mq4s/z5tyhI4Bg96xwzA44Rzv9/aIGSjZr3vMQLCMImTHJe1P0N1dHTum4YlHH8LQIdLehXXrN+HJZ57HiRM02TncJfsoiAIAVY4KwXviHt+6pmXMlWxTsWr0iR2GDSXLAPALhIvTgL46/Bo4SOdrltuLUe2oFKTuZBq7oOTM6CEhjVGflEvgTDVMR+iPr1caMS1T+rdSq3/8SAxJGO/9myGkscQBXbm9WFJBONQpl8OSJgheF1iO42DVLmRGdIHVZUaxNR/pxhx0iugq2K9bdD/8mf9dSNtC2g+dqHqx1c1nF0nnjIYu82J29h24MONqAMCu8g14dde96BzZS7KfXmlEJ2NXHKnZE7Jjk/YlqIAuOTkJ8776BHGxsTh6LA+bN29FcUkpEuLjMXBgPwwfNhjffPkJZs66CoWFRYG/kLRa0oIoZ4P00jpz2gAgQWZUAQD6xY30mRI5MGGs9+F0RPL5gvcOVe3yWwHthOkgesYO9r7OiMjFptLlPvcnJBBxD63NbYGbc0nKWzdVpcuLMubCKFrw2eSsEmybk3MnBXQkaJIROnsJotRxgm2hHKFjGQWGJIwXbPu3YCF+O/6ZZL8rcu7C5PQ53m3i+xAhDSEdoTuTctlEFYw1rFZw/vaKHYLZ2bcL7iF19YgdRAEdabSgArrbb7kRcbGxePLpF/Dd9z9J3r9s5iV44rGHcNstN+DRx58J5lCkhYnn0NUNsMQBXe16dQwYTOl4BfrHjYTVbUEHfabP7+8fNwoKRgklo8Sg+LGC99YU/em3bXnigI4Ko5AgSdeh43twbW4LjOzZoKop5lr0jR2OqR2vFGxbX/w31hX9hbt7vejdlqRLQ4I2RVAkiJCGUDBKRIuCtwp7CZL1HQXbQnme94wZJJkfva5oqWQ/D+fGltKVooAuTbIfIfWlExVss54J5Gxu0Ry6EKXSd47qLQneJqZd5nP/njGDsOD45yE5Nml/ggroRo4YiuX/rpQN5gBg/g8/Y8zoERg9cngwhyEhlmnsiv7xI3Gwagd2V2ySvJ+oTcXAhLFI1Wdif9V2rCpcLFgaABCmXIofKHVKAwzKSPSJG4Yrcu6qV5sMqgh0i+6PSHWM4GHa7XHJ3uzrOi6aR5dJAR0JklxRFP7/rYJRslDPLepo7Iz/9HxBMJfC7XFh/pF3UGA9AavLLCi9naBNpYCONFq0WjqPrdwuN4cudAHdsMTzBK8PV+9Gse2U7L5Fde4zAH9viVLFospZHrL2kPZDvLD42RG6pplD1z1aWvzEn65RfaFkVHBxzpAcn7QvQQV0cXGxOHjoiN99Dh46glEU0LUamcYueGrAJ1CfyRF/dee93vTEsSkX4vz0OcgwdvbuPz71EigZFWI1iYLvqRvQlduL4eE8YJmzNXYStCnoEzvMZztKrKdR46xCVmQ377ZBCWMlBU12VWwMePPOE1W6TNB1gEEZERYLMKtYNWI1ibSobisjDtS81dCasPpfjDoeD/R+Q7JW0s95H6PAegIAUGw9hYyIsx0WSbpU7K3cHLI2kPZFXJjE6XHw69C5muY8T9alY1DCOMG2dUV/+dy/zFYMp8chmNOXpEujgI40ivjaavNxXQ9VQNctpn+D9lcrtMiN6o29lVtCcnzSvgRV5bK8vAI52Vl+98nJzkJ5eYXffdq6SFUMRiVPQaaxa+CdQ4QBg7m59+PDkX/j3l6veXPHL+l0gzeYA4BLs24BAAyMH4ubuz0uCOZqXXZmn7qKrWd7VN2cCxX2EsH78doUpIjSdur64dgHkvk/QxLPRW9RELim6A+f31HrtCUPTo+wMoWvtEsGLJJbyTyMTGMXvDP8D7w57Dc82u8DqnDVSigYpaQohK1OymVdoZw8f1O3xyRVLVcX/oGf8j7yvi4SjWQk6lJDdnzS+iTp0qBmm25pDLn5c0Bo5xQxYDCj0414b8QSvDHsV8ECzgCwvth3QMfBg2KrsMBVkr51XL9J+PE5h84j7sAI/m9OxWqQE9nT7z4ujwv55qOCbT1jBvvYmxD/ggroVq9Zh3PGjcaMSy6SfX/6xRdi3NhRWLV6nez77UGkKgYvDJ6H27o/hecGfYUhCfVbeydYI5ImYWLaZYhUx2Bgwhhc3+X/kKDtgIHxowX7pRuz0SNmEGZ2usnnd0WLenHL7cVwiNZtkc6jS0ayThjQ7SrfgPXFf+P9fU9iZeEibC75V3gcdRyUdRYSt7tt2CTaR46bc+GkSThS3Dmqt2S/GHUC3hmxGG8M+xUvDJrXpA9KgbCMArf3eMZbnbNHzECMEC3VQFqG3MOrzUd561CNXMSoE9A3boRg2/7K7fhg/1OCbXU7UgAK6NoqFavGw33fxZvDfsM7IxYjK6Jb4A81QqxaXOGSD+hsHvGIRePP80lpszCj002yyxQcqNyOMrv/gmnitEuaR0caSzxCZzkzQietchn8CF3nyJ6SjkGxozV7sLV0lWCb3JIGhNRHUCmXb7/3EcaNHY2nnngYV105B5s2b0FZWTni4mIxaEB/5ORkoaKiEm+/92Go2ht2zk+f7U1XZBkWV+feg61lKyUjSnVdlfNfjEqZgmM1+/Hm7odgdlVL9knUpiLNkIVTlmOy6XrDkoTzFEYkT0KEOlp2FOjmro8hQVf/tdsKLScl20pthahbvzLDmCuZ+P7JgecFqZqnLMdQYDmOFH2G7HG2lK6QXcxZzrGafYL0zfNSZ2Lxia8FueiXZt3i/V1kRnTBeakzsejkV/X6frGOxs7IjuiO7WVrUOEobfDnz0mZhjSDcHS7R8wgrCr8vVHtIaEjF6SdHaFrmtScrMjugtcWlwmv7rpHcp0oFv2tJ2np4bYtmph6GXrFDgEARKiiMSv7djy3/baQHydGlEpfO0IXqpTLGHWCNwtEzuKT3wT8DvH9rbVkWJDwI0m59M6hC/3C4t2iA6db7qnYjH2V27zLGgBATmRPaBX6ej/7EFIrqBG6goJCzL7iWmzavBWdc7IwZ9ZM3HHbTZgzayY6d87Gxk1bcPlV17e5JQsUjBKZxi4wKH0voA3wozBjUi4UbIvVJGKsaFtdo5InY3LHyxGhikbv2KG4qvN/ve9pWC3GpUzDE/0/xlvDF+D+Pm/gpcHzMSheOCdBxWpkh+17xw6VPaY4mDtlPoatpat9tlEugBQXZqh9GKnl9rhkizesL/5b9hgujxO/NaDa08rCxYLXcdokjEmZKtgmHgHp3siesF4xQ/DCoHm4qdtjeGnIfEmJ70B0CgNmZt0s2d4lqk+DvidGHY+eMYOhYIJeTpLUIXczr03JaapiEdmigO5o9V7UOCsl+9EIXdunYtWY0vEKwbauUf0C9vY3htyi4oA05VLJKqFk5Eut+3N17r2Sh+hKeynWF/+Nl3bchY0l/wT8jkIaoWuzFIwSk9Mvx9Wd72uW6tT1nRsdiiqX3WKEBVH2V26X7LOnYjMOVG6Dy3O241nBKmmUjjRK0E+Cx0+cxNXX3ozk5CR065oLo8EIk9mEffsPtolAjgELDh7va53CgIf6vo3cqN5wuO348dgHWHjiK8E+tfrGDkesRrrI9oUZ1+Cf07/Czbkk701MFZa0HZY4AV8cegUKRolnBn4huZlpFFrc2v1JPLz5GE5b8gDwQ/bBzO359fhnULFq9I8fKfu+OAUGAMrshYLX8aK5QMW2U7I/78ITX6JHzEDkRvWByVmFw9V7cLR6L1YWLpLcyP05ULUdeys2C4K0izKuwb8FC+DmXEgzZElSfjpH9QQDRnbBcn8uy77VWwAmQhWNiWmX4vuj79X78xdlXCNZOB0AUvQZ9a7g1jNmEP6v77tgGRYnTYfx0KYrqDJWiIhv+g63DR7ODaDpUi6zIkQBXc1e2f3Ec+gi1THQKQzeBxMS/sYkT5Vcq9QKDbIje2B/5baQHkt8nHJ7MQBpxwXAd3S4XP6vMZPT52Bwwjkotxej0HoSQxOFUwyWn/5NkkYciLgDkdaiazuuyLkL56fPBgCMSbkA/7fpCtn7fpwmGdHqOOSZDsg+R9SXXrxsgY9U+mBH6JSMCrmixcMXnvgSNrfZ27F82pyH/ZXb4OKc2F+1HT1jBnn37RM7HFtKVwbVBtL+hKxrv7CwqE0EcHV1NHbGf3q8gPf2PY7D1bsBANfk3o/cM/Oz1AoN5uTcib5xI/DxgedQaD3pffADgHM6XCz7vQnaFIxOnoLlBb8JtmcauyAnSjiJVq3QYljieeigz/DZM6lTGnB3z5fwyOarYPfY0D9uVMCfzcO5ZdMvi62nsLZoCSJVMTKf4tVnhE6sQCZNE+BTyx7bci1UrAZOjz1Aq/37Oe9jQUCXqEvFyKTzsaJwIXrFDJHsH6GKRoo+wxsI10eSLk0y0blP7LCAAR0DFlkR3dAjdhAmp1/uc7/cqD71WhR9dvad3qAy3ZiDkcnn49+CBfX4CUgg4iCtbpplk6VcigK6I9X7ZPcrtRVIKsom6lJx3HRQdn8SXlhGIUi/qqt79IB6B3QqVoPOkb1gcdXgpPmIz4dgcfXiCjufPi4+zwH+70Iu/b9W/7hRuKrzPT7fr3FWYt6Rt+rTfIEi0b0jUh0NvdIIi8vU4O8irUeUOg4TUmd4X+uVRszNfQDP77hdsN+QhHNxZ49noWCV2F2+ES/u/I/fKSv+1L96cXDz67MjewiKz3k4D/ZXbsO+yi2YnD4HeoURS0597+2E3Vm2ThjQxfmuEE6ILw0O6J57+rEGH4TjODz82NMN/lxL0ikMuLvni0jRZ+CJ/h/jm8NvotxegjEpF0j27R4zAK8N/QkezoMaZyV2V2zE0vwffI5wAcC0zGuxpmiJoLjI+NRLZPedmHZZwNSqdGM2ru/6MN7Z+yj6xwcO6L469Dquzr1Xsn3hiS/5qpWOEhytFs5LqyXXgyYuiiL5jOW43/eDDeYAYHfFJhys2ukNuAFgWuZcrCxcLFh4vK7OUb0aFNANlylckh3ZA5GqGFQ75au5pugz8GCft+qVKtQlmg/o4rXJ6KDvhAOV22AXFaCJUsVKUvR6xAyigC5EfK1BB8jd+IMP6BK0HbzFcWodrdkju6/T40CFvVhQDZMCurZjRNJEn9f6+szJAfiH1ucHfe2dm+xw25BnOoA1RUvw96mfBMFdjFq+yqV8QOf/XB+RNMnv+98cflM2jTiQYttpSQdkki4Nx2r2N/i7WiudwoA0QxaO1exvN5kWE1KnSxbd7hM3DIMTzhGk4s7Ovh2KM8XSesYOxpT0y/Hr8c8adUxplUu+UyCURYAA6d/qSdNhb2fIj8ekNSW2l6/FHNzpfZ2kS0OyLr1BWUqENDigu3ja1MA7ncFxHBiGCcuA7oauD3tviEpWhatz7xWMvslhGRZR6liMSJokubm5PS7vRQng/2A/G70Cpyx52Fq6Ekvy52Nk0vmy39vRmCP5rrf3PoKLMuYiM+JsKZJRyZNhc1kk6Y5F1nxBMJFvPoo/8r/FgPjRgkCnwl4qCAq2lq2UDejkRuhKbYWSbXUVNNOF6ee8j/Fgn7O9wCn6DIxKnuxzgc/cyN5YUbCw3t/v66GlV+xQ2SUWFIwS/+nxvM9gzuSsFpTxzo3qgz6xw3Bf7zegZJU4ZT6GR7dcI+iN7h0nnQvZvZ4Pe+EsQZuCSFUsjtbsk01xDpW6C9sD4hE60bIFIZhrIR6dq3ZU+h3xLrLmCwI6KozSNnSPHojpmTf6fD83qg8UjDJgytk5HaYJCk3xa1v1QW5UH/SKGYzXdz8AN+eChtXCoBLOA684k3LJwQO72yZI3feXXsyAkcybrmt/5fYGXWfrcnMulNoKBYFuki49qICuoyEHXaL7YVf5+hZ/aM4w5uKJ/h9DpzTgtDkPj225FiZXVYu2qakpGRXO7TBd9r2rO9+DHeXrYHdbkaDtgGTRMhXTMq/DysLF3vTg+lIwSqgVGsE2q9tX9eLglunoGydceznQunInTIdQYS8VpED3iRuOwvz5jW5HqCgY5Zk0UQ5bS1c36b2XBKfBAd1lc+bWa7+Mjum4/bYb0TE9/B42NAodotXSEsviFMVqR4WkkqMvKwoXoaMhR5BSqWCV6GjMQUdjDialzZI8SPqyuuhPrCv+C0dr9uH5Qd8I8sInpM0Q7FtiPY03dz+Ex/t/5L05zz/yLgDgl+OfonvMQG/61o/HPhCkMmwtXYUZouUMqh2VsqkuNrcFJmcVjKoo2TYXBBihC5XtZWskI4vX5N4nmZhfK1dmeQNfOho7SypT1uobN0w2oLso4xpB0F3XKXMefjj2Pu7q+YJ3W1ZEN1zf9WHv8g2phk6YnH45fjz2gXcf8Vp9ABCnTUaiNhXFojlW9dEtuj866DNRaivACdNhVDhKoGCUMCgjYHdbJSOEwegRMwjR6nhsK1vVoJSpcSnTcFO3RwEAm0v+xau77gMHDxiwGJgwBkZlFLaUrvA5StoQOknKpaXOf4tu/AH+ZrtHD4ROqcehql0+2yYpiOJjdK5WkfWUJLWYhK/BCedgdvbtPqv91tIotMiK6IZD1bv87jcwfqzv9xLG4u6eL+GN3Q9ICqIAEFTstbutwoDOz7meYewiuRdaXCbolUacNB3BO3sfafBc5bqKrPmigK7xzxW9Y4fi3l6vQa3QwOVx4b19j2NN0Z+N/r5g1b0/dTBk4pLM6/Dl4ddarD3NYVjSBMlySLXitMmYnnk95h35n2xxN61Ch8tz/oP/7Xm4QccUj84BddahE1W5VLKqenWeiLGMAjd1fQxdo/sJttdnofCd5esEhdz6xA7DklYQ0N3Z4zkMSRwPAPi3YAHe3/dk0N8ZoYrG0MQJcHrsWFu0VLIMVlNiwABAUNej1qrBAd3OXbv9vh8THY3bbr0Bl864GCqVClu2bscrrzU8b74l2d1WPLP9Flza6WZMy7xWdp+1RUvw0f7nMCf7DoxKnhzwwe6f079Ar4zA//V9W/Z98efFI3q1PJwHv51JNyiy5uO9vU/gnt6v+Dzu1rLVOFqzF49tmYt+cSNwsGoX9lZuBgDsqdiEV3b+F4MSxmF/1TZJD+qxmv0ot5cICrvIFUSpVWIr8BnQFVpP+PxcqP2U9xHu6332hiieCF1XqiELOoURVrd8cNE7dhiyIrphd8VGDEoYJ7tP7X7iAitphmxcknm9YL9yewk2lfyD3RWbsK10NZSsSpBOpGRVSNCmCD5zXupM/Hb8czg9djBg0EcmoAOAbjH9YS6pwY1dH0YHfSaWnvoRf536wWebAeCijLmYnS2cs+DyOL2pMC6PE1vLVuOLgy8HXC8qkGkZczHrzLFOmA7jsS1z61WaWcVqcEXOXd7XAxPGYmD8GGwqXY4rO9+NyelzAAAW19349fhn+OPkvEbPsQCk6TaNTbm8NvdBnJc20/s6r+YAtpWtxqITX8HsqvFuFy9ZcNTH/Lla4qCdArrwlWbIxl09XxTMiax1wnQYDPg5srW6xQzwG9BFqKLRNbqv32MOTBiD//Z6GX/mfyfYbnGZRJ0XFkTibJDm71wXZw0UWI7jng0zoVMYYHGZgu7VL7SeRC+cHQFMbmRAp1cacXO3x70jNUpWidu6PwUP58Y6PwucN5VMY1dJet45HS7Gz3mftOlRuklps/2+Pzn9Cvx16kfBvLK6RiRNwl+nfpSdU6pkVBiZfD5iNAlYU/in93op16nraw4dwHegNKTTUcWqcUeP5zBY9JxgclZhT8WmgJ/fXrZWENB1jxkIFasO6l4WrP5xo7zBHACMTbkQ84+806ilmmoxYPHfXi97z/suUX0bXCipsc5Pm40ZnW6CyVWFd/Y8ioPVO5vluM0lqGUL6tJqtbjtlhvw15+/4fLZlyLv+Encesd/ccXVN2D7Dv89iq2Rh3Pju6Pv4IXtd6DaUSl4r8xWiE8OPA+r24RPDj6PuSvH4MZV5+L+jbOw7PQvku86bjqEw9W7sbN8HT7c/wxOmo7Aw/m/wX3jY/L4huJlgjlfm0qX4+djH/v8nm1nFq08bjqIX49/5g3mam0tW4UP9j8lmw7DgcO2MuHyBf5G2nylXTrcdpTZmq9gzpbSFd4iNoGwDIvOokI0AL8g/L29XsX/9X0bs7JvwzMDv/AGDnKi1LHIjOiCCFU0hidNxKS0Wbij+zOCOQJujwsv77wLnx18CZtKlsPFOWFzW3DcdMhvGyPVMRidPAUA0Cmiq89R4e7RA3Bj10cwJPFcpBtzcF2XB2WLwdTqGTMIl2XdKtlet81KVoXBCePw8pDvMb7DJd7erYaKVsfjkswbvK87GnP8LmZf16CEsZLUsCkdL0eqvhMmpc3ybtMrjZiTfQdeG/IT+sX5nr8aiP+iKPVLuUzVdxIEcwC/9uHFmdfhoT5nO3UYMJJFo48EGKETL12QRAFd2BqdPEU2mDM7a/DJgeclPfvdovpJ9q2rb9wIQSaJ3W3DW3v+zzsSUat//ChcXqeTBDhbEKVWQwoAiTuZdpavh4dzw+yqDkmKlrTSZeMCustz7pIUgmEZBW7v/gyGJIz38ammU1vhsS6tUo/z0i71+Rm90og7uj+LV4f8hGkZ8h3OLUmj0PktqpYb1UeSlTDv8FuC0v1KVolxKdP8lu+f2/l+SdaUQRmBR/u9j5u7PY7Lsm7Fw/3ehU7Bd+iKMy88nMcbyMnNGRVf27MiumNU8hSMSZ6KMclT0Tt2qGApj2tzH5AEcy6PCx/uf6ZegeGu8g2C50KtQocuUX0Dfq6pMGBwWbZ07cvGLvdUq3NUL0EnxpiUqbKjp6GWG9kbV+feC4MqAkm6NNzS/YkmP2ZzC7rKJcuymHXpdNxy8/WIj4tFYVExnnvhFfzy2yJwXPgPaW4vX4uHNs3BTd0eQ+/YoahylOO1XfcLetg5eFDtrEC1swIf7X8GW0tX4oaujyBaHQcP58aXh1717vvP6V/wz+lfoFHo0MnYBbOz70AXUY9qsfUU/jg5D8MTz5NUvfzl+CeSNv5w7H2kG3MwKGGsYLvdbcOeegz1+/PHyXkYkzwVSlYJD+fGv37mQfgqjFJkPdnsw9vfH30P/9f3Hdn3HG6boAJV71h+InZuVB/UOCtRbM1Hv/hRiBatLydeB8rsrBEEGld3vg9ZEd0kefq1Fp74Snbex8GqHegU0dXvzzMl/XL8c/oX9BHl5tc1IH60ZIR0eqcbsatig2TfKFUsbuv+jOzDpBy90ogbuj6M0clT8NXh1/0GzNkRPXBHj2cRq0nEwhNf4odj7+OCjldK/l3OT5+NVYW/I890AGmGLESp47C/cpskzUVu3cau0f1wew/59ifoOuCBPm9iwfHP8d3RdwPOfRUTj0TYBSN0wtQQXyPzF3S80uf350T1REdjZ5wwHUKyvqNkBPlotfySBbXED7cJ2g6S5VVIeBiccI7gdYHlOJbm/4CVhYthdlUjRpOAiWlnl7LpEt0XLKPweU4PjB8jeL2zfD3WFi1BqbUAD/b9n+BcyzB2FuxbIZqTJF1zUf5c1yh0kjU0d5avl923sYos/pcuUDBKJOpSUWyVXx4HAHrGDMZ4H5WnFawSd/R4DuYdd2B3xcZGt7MhaXpR6jiMkCmyBQCT0mZhd8VGzMm+E50iumJd8VJ8cuB5uDxO/KfHC94qiLOyb8MpyzFsKglcGbk59I0djpu7P4FodRzWF/+N/+15WPDv0UGfiVu6PSH4TLH1FBae+Apx2iTBuT4pfZbf7JqMiFyMSJqEVWfWoI1Sx+H/+ryNjIiz69kl6dIwMvl8/HXqB+gkSxac7eSQG6Grex+4sOPVmJNzp2SfneXr8cKOO5GkTZWsOexw2/D67gckneK+mFxVOFq9V/DM1yd2WFDnYzCGJZ0nuUYAfMdxMCnKfWOFzzAswyLdkN3ko2Wzc+4QvE7RZyArohuO1vjPiAknQQV0k847F3fdeQs6dkxHjcmEV1//H778+js4HC03RNwUyuxFeG77bYhSxaLGVRXwAXFL6UrsXDsVXaP64pTlmOzkXbvbiv1V2/HkthsxLWMupmfe4E2xnH/0PXDgsOz0L4I/7i2lK3FCZjSHA4d39j6Kpwd8JkjP2VW+Iejqkfnmo7h/42XoEzsMB6p2+FwfC/C9dEGBpfnSLWvtLF+PfZVbJeksLo8TKwoXCcolXyBaxLc+i3rmm49iV/lGnJ9+doTIX6rTKXMefsqTVrcC+IIBdW9kcjoYMtE/fhT6xPoO6OTSXbtG90X36IE4VL0TU9IvR7oxB2ZnDTpFdJWsQSUOdOV0ie6LZwZ+gfXFf+OrQ69L1h+M0yTjgT5veas2Tu90A1SsCuemSifAs4wCN3Z9FJWOMm9F2N0Vm/D89tu9DwFxmiTZeRQAAgbBF2Zcg85RvfHW7oe8KSIso+ArCWpTUe2sRKWjFPmmIyiokxIsGaFz+R6hk0tDi1HHY1TyZL9t6xbdHydMh5AtKohSbi8JmM4iHqFTsirEahIlvwvSMmLUCegXPxJR6ljoFAaoWA3yavZjRaGwMyzdkCMp+PDWnv8TdPrsq9wqeF+vNCLTmCv7EKJi1ZKRss2l/wIADlbvxGu77sMj/Xwvr1K7qHit+pzrAP+AV3dU3+VxYU/FZtl9G0uc6h+nTfIudROljsMT/T9Cij4DhZaTeH33/ZKqrxqFDjd2fUSwTbz8h5JV4q6eL+KRzVf5LZTC/w66IM90wDvyEqGKxn29X0NOZE9sKV2FN84UnvFnQuoMSZXHWpHqaDw14FPv67EpF0KvMOJg9U5JSfsL0q9okoBOzWqRG9ULXaP7Qa8wYmXhYuSZDvjcPzeqD/7b62XvPWRo4rk4ULkdf+R/C4B/kL+z5/OSIG1J/vfg4MHy078J7oPi/UpthTA7qwUB24xON2Jt0RLEahLwcN/3JH9PAD8Kzgd0wlEgW521O12cUzLNpXZEmgGDCzOukf2Ze8cOxZjkqciK6CY4l2wuC17YeWeD143cXr5WGNDFDcc3R95s0HeEgoJRYmanm2XfC3aETq6oW0ZEbpMGdH3jRshWCR6cMJ4CusGDBuDe/96Jnj26wel04rMvvsb7H36Kmpq2vS5MfRZ8ruX02GVHRsQ8nBs/532M9cV/Y0D8aOTVHPB+7t+CBege0x/DEifiuOkAPtz/jM/vsbkteGXXPfi/vu8gSZcGm8siWx63MU5b8upV2r/MR8plc86fq2v+0XfxRH9hOurBqh3YXb5RENA1xpqiP3Gsep8goPPF6XHg/X1P+MyFP1i1Q3a7uALm9MwbZXvMArk062a4ObffQHVb6Wq8tPNuxGuTEaGKhtVthsvjxCWZ12Nch4sk+w9NPBddovri4c1XejsslIwKd/d6UVKC39fNEICkimrPmEEYmjjBW2BmVPLkeo0imp01OG46iO4xwmqm3aL745F+7+PBTZfD6bHjxq6PyI74/XHyW3xxiJ+L6m/ZgvqkXE5Kny14UHO47dhbudm7oGxtu5bkz5eZP+c/3RIAqp0VsLksgtHBJF0qBXQhlKDtgDEpU+Hw2HGoaieOVO8NOHE/zZCFqR2vwoik871FjepKN2bj68NveF+L5+SW2AokI/hVjjKcMuch1ZDp3dYteoDsQ0iPmEGCc8LDubH1TMo9AOyu2IgyWxHitEmy7a9dsqCWpACQjxE6cZGmg1U76jU3tiHkKisn6VKRbz6Ky7Pv9BaUSdan45F+7+HpbTcLOj/PS50pmWv6+cGXkGbIFqRGG1WRuK/363hk8zWy86pHJU/BdbkPQqvUo9RWiKe33YQiaz5u6PIwcs+MUg5KGItzU6f7LGjBgEGiLlVyDxIHmGKDE8/B4MRzJNu7RPdFp4iuIVvGoYM+E1fk3MWnFNa5jp2Xdhle3nkXdpSvQwd9Jubm3o9kfUccqtqJHeXrcGXOfyUdgpd0uh4rChdiQPxo3NLtCUmKZIHlBJad/hkAkGc6gLyaAz6LiO0q34CNJf/ggT5nA5wkXRomp8/BuJSLZIM5gE/xS9FnSFIuLaI0ZLvHBj17NoisDehSDZ0E92Gxy7JukQapp75vcDAH8OvRzeh0ttJtR2MOsiN6BEzDb6wUfYb3eD8d+8j7nDc6+QKk6Dv6+ExHxGoSG1xlFOA7PsRVnQG+4FxTYcBgdtbtsu8NSTwH3x2Vr2sRjhoc0H30/lsYMXwoPB4Ov/62CG++/T6Kihr+iyVCpy15OH0iT7CNgwfv7H0M7+97ql5pHEXWfDywcTYyjbk4Zclr1Jo/wWhNI3QAsL9yG3aUrRP0aG4vW4uDVfXvCdpSuhJfHXoNY1MuxOT0OVArtPyyDye/hYfzwOG2y6ZYHqjcjipHOSocJVhV+LvfFMUyexFKbYWC5SaOVu/Dn/nf4dbuZytKiYMfPlDYIimRLCauuCVWbi/Gu/seBwcPSmynUWI77X3vg/1PYV3xX7iuy4OSeSsxmnjc2v0pPLvtVnDw4OrceyWLrjfGlPTLvQGdOI3Fl8Unv8HPeR/hvNSZuKrzPYIHkVRDJ0xKuwwHq3bKBnMAn/657PTPyDcflZlD57vKpVqhEaTA6RQGyYPaysJFOFS9SxDQ1f5OxCN09e0tLLKdEgT3ibrUelVSa08yjV0wJHE8qhzlWFm4qN4FDgzKCDwz8AtEqWO921weF/LNR3DKfAz5lqPYVb7B+zetZFSY2+UBn+l8tSanX46NJcu9HTjiFPnNJf/Kfm5f5RZBQDcqeTL+zP9Ock8Qp1serNopuQdsLVvlszOrXBTQ1bcAUO9YYY97qNMtAf5hW1zWPUmXBrvbKllKJkIVjUf6vo+nt92Ek+bDACCZH7e3Ygv+OvUjACBKHYMhied630s1dMJ/ej6HF3fc5U1jVjBKXNX5HkysM7ctXpuMm7s9jh+Ovi8JtIYknOMN6PrEDsOghHGI0yQhVpuERG0H2QIdnx18Cdd1ebDB/zYAn6L53r4nGvXZWiyjwNSOV2FGpxsl0wsAfgTz7l4vY/6RdzC9043eICdBmyK7PivA/y5u7/4sescOkQRzR6r34tVd9wiurysKFvoM6PZUbMK2stU4VLULnaN6ebdfnvOfgD/bqKTJKBV1eIk7HWxuqyAwqw3oxPc08T1fXK3T5XHiz5PfBmyTnMM1eyTV06/OvQePban/XMlMYxewjALHavb7TcNXsWo81Od/3o6OnMie+O96PpNmeqcbfH4O4EflV8tU9Q6kd+xQ2U6L+nRUaxV6/pmrnhUxdQoDEnWp6Bc3QjCqW1eKPgPphhzvdSLcNTigGzliGDiOQ0FBIeLj4/D0E4FLx3IccNOtgf/oiLyGlM61uS3YX7W96Rrjh685dAUtNEIHAB8feBaP9f8ICdoUHKvZjyX582H32FBiK5BUk6x0lOHPk98iXpsCgzISm0v/9eaKf3f0Hfx6/DOk6Dsir+ag90IpDqicHgc+3P80VhX+3qB2bixehskdL/e+/vHYB9hRvg6zsm+TTOKvta9yK3aUrQ0Y0Pnj4dz4356H/Qb/O8vX4Z71MzAhdQYu6XQ9IlTR3vd6xgzC9E43QKvQ1WvU08O58cmB53GDKP2prqzIbuga3Q8eziPpJTxYtcPbE17L5KzGH2duoEtP/YDD1Xtwd88XkaDr4N3nooy5fiu0AkD/+NF8QOdnHTrZamisztubf06HiwUPBR7Og8UnvoZHdGONVseho7EzMkVpo0fqMUIH8GmX4oCuuWhYLXrEDILdY8Peis2trvxzR2NnzOh0k6BAwcxON2Pxya/xx8lvvZXtfBmaeK4gmAP4h9nMiC7eh83Lsm7F2qIl+ObwW7ip26OSoEYOy7C4qetjeHDTbESr4yUpw77S5nZXbBKkLGdGdMFFGdfg57yz2QcMGAwQBXSbS1dIvmtrqe+ATjpCJxqNFnV0pOgz0D9ulCDYBJomoAP4tMu6AV2yriN6xw6TrQYdqY7Go/3ex4Ob5sDtcUnmov+c97H3vH137+NI0qULAom+cSNwbuol+OvUj9ApDHiwz1uSue4AP9J+T69XJdu7RPWFXmlEr5ihuLvXiwF/tp3l6/HXqR8wKnmyYCkdD+eBh3P7TM2sNTxpIr45/GbAZVsUjBI9YwYhWhOPraWrvNf9KFUs7u/zBrIje/j9vFahw9W59wb8eeqqTaeva23REry/7ynJw/nqoj9wec5/ZH/e2kqR3x99Dw/3e9fn8U6aDiPPdFCQ9j4qeTKW5H8v2E98HbBLznd+tLFzZC/B9i2lK6FT6gUddOKfobFVID2cG78d/xxXdr7buy03qg+GJZ6HdcVLA35+dvYduOhMRsxx0yF8feh1n5liY1MukiwFMjjhHHg4t2QtY3GHc/eYgY0M6OQrdHc0dJZUCa9reuYNmN7pBtjdNry37wnBwvO+9r8487qAfzcAP0p38lg7DegAgGEYpKV1QFpah8A7A22iOAoJrNpZITsPq6VG6AB+1PDOtRciXpssGHnaX7kNCclnA7oqRzme3noTTlmO+fwum9siSWv57sjb6BkzCEpWhUp7KV7f/QAONCKg/jHvQ+iUBmQYu+Dfgt+wtYxPlZp/9F3JJPJaO8rXSebY1Fp++jfZVMlqRwU2lSxHhDoGbo8Ly07/5PM76nJxTvyR/y1WF/2B5wZ9LQiG66aI1LK7bThUvUtSdnpt0VIsO/0LMiO6eh8sXR6+2mfdOYBTO14Ft0fYkXHanId39z6O14b+LOjlW3zya0F61NGavXh99/14btDX3m1GVSSMKuHDSo2zUhCc9o8biQXHP29QyiXAP+RY3SYwYDFJlIK7uXSFt0NDvATIVTn/Fazzxbe9fiN0xeKqf/VYXJwBi/7xo+D0OLCrfINg9KF79AA4PXYcqNrh86bKMgqMS7kQMzrd7H2wXnj8y5DM8Rjf4RJcmnULTM5qvLP3Ub9zdf2p+0BTl0EVgUuzbsGktFl4dde9fv9G+8WNqtexhidNxNDECbI9zg63DbsrNkHJqgTBXqohE5dkXi/pQKl2VPrsiNtUshwnTUeQbsz2brsk8wZsKV2J46aDyI7ogVnZt0nmxG4pkQZ0uys2SRYMryUO6HyN0CkYJe7u+SIGikYYAf5vKlSpf2JF1nxBtsHUjKug91MdL1Idg+mZN0jm5lhcJsE1z+6x4ZVd/8WzA78SBPIXZczFP6d/xRU5d8kGc7XEFXgBvshKn9hhuFi0bI0vv+bxSxF9fOA5PNH/Y+iVRpTaCvHeviegUxjw314vCUa48moOoIM+0ztSpGLVOC9tJpad+hlKVoVSW5FgdCZV34mv0Jgy1XueVNpL8eTWG1BoPYk7ez4vG8y5PS6UO0oknZ/+HKvZj3RDjmzaMSBMbxercVZiS+lKQal8gJ+zXhsk7arYIDs/HuCzTZ7fcQciVTGCgC5B1wH9RIGlVTRiL00xlh+hO1S9C7vLN6B37DDZv/1FJ76WbGuIJfnzMSF1hiCFdE7OndhcusJvTYQYdQKmdrzK+zrD2BkP93sXW0tX44tDLwvSlhWMEhdmXC35jvPSZkoqsB+s2ol1RUsFgXyPmIEYljgBV+TcBRfnwicHXsDO8nV+fy5+ySX5ji+tUn+mqNFp9IgZAJvb6s2AyI3sjZlZ/Hw+ndKAG7s+gm1la3z+W/SMGezdX87xmoOCEbvBCeO905Oi1HFweZwwu6r9/iytVYMDuvHnTQ28E2m3Sm2F6FCnx9bqMqPKUdZyDQK8qYR1LTz+BfrFjYRRFYkSWwFe3HGn32DOlzzTAdy8eiIyI3Kxv3I7XJwz8IdkWFwmfLD/acn2FQULUWI9jXEdpmFg/Bhvqk6VoxwrChbC4jJJ5trtLt+Izw6+hH7xIwWVOivspXhm282N+jlr1Tgr8c6eR/BY/w8lKTR1fbj/GWwpXYGnB3zufRB1uO34JY+v0vrpgRdxsGonYtTx2FCyDH3jRmBu7v3ezw+IHy39tyhchELrSSwv+M2b3lZoOYk/T34n2fdozT6sLVriMxWoyJqPLw+9JlivMDeqN4zKKJl16Kyy/11Lq9QDDqBbdD/Jg8/C4194/3t/5VZBe3rGCou97C7fWO80aXFhlEAjdHqlEQ/2+Z+39/+v/B/xycHnAQB39njWm3L2+4lvZBc1zjDm4s4ezyHV0EmwfXL6HCw6+XVQf+Pphhxc1+UhsAyLKHUs7u39Gu5ZP93vSFqcJhnjOlyIakcFlhcsgNNjR4YxVzaYqytSHYPru/wf7tsoXxZexWokvxd/xA90NpcFi09+gyX581HtrADLKPDUgE8FD4UXdrwa1aLf85bSFT6Lbbk5F97b9wSeHvCZdzRKySrxUJ//welxCEaia50yH5PNjHB67NhVvl42GCt3+K9yWVtafGTy+bKfB4CdZeubrNrqzvINgnW6xFWIXR4njtXsF6TjjUiaJPn32VW+XpL1UmorxNt7HhGM/MRrk3FFzl2SjjFfafZi0zKvQ8c6RcrEqh0VyDMdwN+nfvIuJ3TCdAi3rjkfHfQZyDMd9J4TH+x/Gjd0eRhKVoUyWxHe2P0ApmVeK0ghn9HpJsw4sxSM1WXGsZr9qHKUoUt0P0FHUq1oTTxu7/EsVhYslMyv9nBu/H5yHn469jEcHhvu7fWqJCAC+JFFrULnzZo4WLUDL+24G9M73Sg7v3xzyb/48pD/RdNXFCyUBHTiddy+P/oeHu//kWCb1WXGizv+g3J7McrtxThpOiwoEif+Ga2i81tcwVjD6qBR6AQdKQBwuHo3TpgPY2XhIkkK//ayNcg3H/H78wXi4pz4+vAbuLf32ZHfBG0KZna6Ed8eedtnh9uwpPNkA8z+8SPRPbo/vjj0KpYX/AqAH7GUC9LlguQl+d9LUhKTdGm4o8dz3uPd3v0Z3LZ2st+AM8OY63MxeYDPrLg85y5vZkXtvUi8dIJRFYWB8aNl141UMEpc3dn3CPKeis344eh7eGLA2WrxHY05uDTrFvSIHojOUb0x78hbWHTiK5/f0Zo1OKA7XUAT74lvpXZhQNeSo3P+nDAfxt3rL0aKPgN5NQfqnZctx+Sqwu56LBzaWHsrt2Bv5RaoWA16xw5BtDoOm0r+9fYibS79V3BjWXDiSzg8Nnxy4Hnc3fNFsIwCRdZ8vLD9jpCkv+6v2o6f8z6RHZlzeZyYd+Qt7xy4Z7bdjNk5dyBSFYs/87/1BpMcPN5y0wBfAOjSTrfI9nYD/IPyyjNLZnx24EUcrtqNSHUMVhUu9vngP//ouxicMF62p3j+0Xexs3y9YLSCZRToEzfM7widm3MJFl4HzhZGEQePx02HBItA76vc5jPABIB/ztxs66NItLh4uiEbwxLPw6aS5YjVJCJB1wFWlxl5pgPQKnT4v77vCIKKCWkzsOz0L4gUzR+a3PFyLDv9iyDoj1BF4+G+70mK3QD8SMTIpPOx+GT9eqUNykiMSbkAZmcNVhYuBgcPpnS8XPAgEqtJwPRON+Drw28gK6I7zk+fhWpHBX7O+xhmVw1i1PF4duAX3oeDNEM2Pj34guzagxaXSVKwIN2YjdzI3rJV1XpEDxD8/j2cG3euuxCJ2lSkGrKQZsjCiKSJshVlqx0VeGHHHYJRVg/nxvv7nsILg77xnjMKVikZTQtUpfBozV78duJzXFJnxMffw1Ht/DA5W0pXyQZklXZhUF7lEKbv1aY/d4+WL65UaS/FT3kfyb4XCuuL/8K4lAt9BtyrChfj+6Pv4e3hi72Br1apl6TDbi2VLyMvN/IjXifO5rbi8S3X4ry0SwPOmRTPCyq1FeKHo++jzF6IfPMxVPpIy7O5LZKR+hUFC3GwcgfS/r+9+w6PouriAPybmS0phBp6L9I7CChIbyogqCgiKlawYO/oZ+9dbAiKil1BQBAQkN57h1CSQEhIr5tkd2fmfn9sYXdmtmU3ZTfnfR4fk92d3RtyMzPn3nPPjW2LE/n7UWjNw6rzv3lcExyti1UViNLStmZn1Z5w2aXp+OjI027rvj8+8gxm9/rSLR30n3M/YeHpj8Ego66xAWrq6yC5KAEMDIuT5mFI43Fuf3uJhScw59gLPgP+AznbVOslD+W4pw0ez9uHfVmb0TveNpsuySI+OfKsW3XTTRdXeF1fp9ybUTkjbRSi0Taus9vApSiLzhnoP85+hSsbjHbLSPo7RIHAnqwNOJK72y3DZULL6ehcpy9+PfM5MktTITMJeZYcZxClXEvqKkoXgxmdXkTv+KvwV9I3uK7lnX61I9+Sg50ZayExUZXR4nrOrmmojcvrD8W29NUe36t7Pe10S4dRTW90+1u9psWtMOpiNIu5DW40TjOgG9X0RlUAnmfOQlbpRZwqOILFSfNQZC1AnjnL7fzpel7tV39Y9QnoCPFGWRilsipc+qPQmofC/LzKbobfrLIZe7M2qR7/5fQcxOji0Dy2DdZc+NOZ+rA7cz2e2DkZjaKb43DOzjLPHmpZnDQfXev0c9uq4VjuHsw/+ZZbRdR8aw6+Ov6K+g0UzFIJ1qUu1kwDEWUrPj/+P2fKjciszpFGb9JLUrAudZFqS4jEwhPYnv4vGBiO5O5ymw3sVW+Q16Iotu9LUMMloIvSRUPgdKpRZeVePd5SW4us+QGVHlfO0EXpYvBI17c03rcAJrFAcyPm61regZqKtWKALZXN9Xc2seWdmsGcw5DG4/0K6JrEtMILvb5yzhb0ih+E7xPew6CGV6teO7bZLSiyFuDG1vc5A6EudS7Hy/vuwX0dX3S7GA9rch1+PvMputXt7/YeuzLX48tjL6F+VGM81f0jt5maYU2uQ0LBIVwePwwTWt6BHHMGvj35tmoWIiH/MLJKLyKr9KKz6MySpG8xs9NLbsWWMktS8eaBBzUHTFJMZ7Ak+Vvn7IlSqVjsV0XkxYnz0Sd+iNcCAtml6fg98Uts9LJfqKd9sZTnhyRF6mTT2NYw8FGqtX+HcnZgfepS7M/eEvLqlq4kJuKDw0/h5d7zVEUOZCZj2bkfkGvJwt6sTZrVIB2vO5C91eNn/JX0DTr1VM9SOCxL/h7JRQn48dTH6FVvoNv6Zm8VGgFg7YVFqq0rApFWcs6tfyUVncCJvP0+i14Fau6J11RFvMxyKd46MAs3tZmJJjGtsCFtmduaLsesmEOhNQ8LEt5xVrZMNSXh3YOPaq5BVpKZhO8S3nOuPTyRd8CtWqvDJ0eexZS2D6GesSFWnP9JlUa9NX0Vbmk7y2PlUPUaOnVAp0y3TC5KcAZQ2eZ0fJvwDmZ2egkA8F/qEtVMYjAWnvoQb13+k1v729Xs6rb1iFW24OfTn+JAzjZVYK41mHV5/aGqYkzerE9d4jwvHM/d5/HvCgCGNBqPbemrYeCjMKTxOOh5I04XHMGZgqOIj2qEKxqMcnu9sqqr1jpkT4MmPepdgdqGeLdBkTh9bdVWC4mFJ/D87ttUgwi7MzdgVDPttcTta/VQvXe4oICOhNSBrK1uf4RaJ2ISWvnWHHx4WDvNIK04GWnFySH/TJlJePfQI5ja9mHERzXC5osrnbNyZbU65Tdc2/xWtyIHJaIJHxx+ssybqy5OnI/Bjca5VZX7+fSnzrSVfVmb3QK6nvWudFY3cygVlak5xW4prlF8NHrUvcJt9BIAtitGKy+YzqpGOR22XFzpcVsLLRdLziPHnOGxYI6Dbe2gdsnt/g1Gat7sDGp4tX0mIR31jI0wupl7eqKyoFCLGu18lk1vUeMyzO75hdsapQENRqJxTEvNhes6XocpilSbVnEd8PblP6vKk+t5A/rVH67a3Hpj2jKUSCacM53GmtRFmNr20sayVzQYjT1ZG/FE90treRpFN0eMYoZYK/jJtWTirYMPYUij8bii4SikFZ/H0uQFXm8A/kr6Fm3iOjtnFFxty/jXr9+9yKz44tj/8Ervb1SFewoseViW/B1WX/jd596j/t6oJBedgswk5wwFzwm4rFY3NFOk3f55dm65bwrsUCIV4e2Ds/Bq3+/c+uCuzP+c57m1qYs83nieKTjqdfuhQzk7cDr/iKqICmDblscxcl8iFeHLYy/jqe4fwSAYUWQtwJyjs/Fo17fd0vwcZCZhY9qygH5WfzjW3GnNGKvbn46dGWtxIv8AZnV5Q7OS5ca0vz2uhSqRijyufdOy+eI/SC5MQP3oJjiUsyOg89vOzLWYtW0c6kc1wfG8/Zqzema51Gt7cswZ2J+9RTN9H9CYoZOVa+ii0EgRoJ92ybgAbJkl+7I2I1oXq7m1RjCSixLwR+JXuLnNAx5fo+cNuKP9k+ilKESUZ87C4ztvwNS2D2vuAevqgikJjWOaq5ZQyEzCmguLnN8fy9vrNaDrVre/PRXzDbdA2FOK8q7M/zDAJTskEDwnYFDDq7H8/KWZtCltHlRl+HyX8J5m39mZudZjQFcsFqF5bFsK6AjZk7UBCxLeRY+6V+JY7h5s9TIFT8JbsViE+SffDNn7ZZvTseL8T85ZOq0UtkDlW3Pw9YnX8GDn16Dj9Vhx7ke32RDlaL3WjZHyxK5cR2cUYlSjngn5B1Wz1QwMJ/IOaI6QBpJuCdguth8efgoPdn7VuQdXoDyNXOt4Pa5pPhULT3+EyW1muN34ibIVr++fidk9v3Bbtzek0XgkFp4ABw4cx7utB2sT1xnP9/xcM7AMdF9FT3tN3dzmfrfAUJJFHMu9tI3DprTluLn1/W6peI91fde9LRqlrfd7GZDaePFvv2dcJCbi3UOPollsG3So1QPtanZD09hWuGBKxE+n/S8qk1yUgBf2TseABiMhM8k+YHMe502nA6qGvCz5O7f9IXdpzA5b5FJcMCW6BShDG493u/GTmaTaxLu85Vqy8NaBh/BEtw/QNLaVfT3spfVGh3N2Ir0kRXNW2lFsypvFSfPxdI+PVY//cuYzt9T8w7k78czuW9CuZhccy92LbHM69mdv0Qzo9mVtKXPlQ29STGcxc8sYNIttA4tsRqE1DwKnQ5u4Tmhbswtq6GviXNFpHM3d7bZZ+i9nPsPtlz3u9l55lmyf69sCdc50GufKWBI+szTN41ZI/lp46kN0q9NPVagNUAd0Wud1ZYVLre2HCqy5PquLltVfSd8guTAB09o96raURUk5u7U9Y43z+rw/ewtmdPyf21YIrn4+8ymGNp6gui7tzdrstrfp0dw9XtvKc7xzH2RXWsGcRTJj5flfyhzQAcDgxuOcAV3ruI4Y1mSi2/NbLq70WPzqSO5uHMje6qxUmmfJxt7MjdiduR5HcneHNJupIlFAR0KKgWF1ym8eN1UlxJtfzszBmYJjqGOMx5aLK1Ek5gf9ntsz1mBf9hYY+SjVhTfbnK6qeuXqYPZ2ZJvT3R5TXvhrGeqo9gDzNJBxIm+/6sJ5puCY2ybI/jpdcASP77gR/erb0gZdq9SViCbVXle55iwcz9vrdR2fw4gm12N/9lYMbnSt2+NrLixCekkKNl1c7pZCOLDRWOgFI65oMAolYhF+PjMHW9NXoWWN9pjd8wuPayOV8izZqmIX/qinKLN9quCIW0pVniULB3K2uY3W+yppnVV6scw3o56kmM4ixXQW61L/CuI9zuDPxOAKL/x9biGGNJ6AWoa6EGUr1rqMxLtKLDzhFqAo93O7YEqCOYj1x2WVWpyEp3fdjIbRzZBRcsHtBoyBYd2FxZja7mHVcf5kjOzL3ozEwhNuqaVnCo6qUqgBdQbEvqzNboGygz8p4mUlMiuSik66PbYve7PX4HXl+Z/Ro+4VbmnDC06+G7bV/Ty5WHIefyZ+rdkXfBVFaRrTSrXW9XS+5/1ky8u+7M04mLMdo5tOxtjmUzQHKpRc++rerE14audNuLbFrehXf4TboNix3L3Yl7UJVtmiui6tufCH2/fnTadxIu+Ac5lFcmECLhQnul1P/GkbACxKmoczBUchyqLHaqhK61L/csv+alGjHVrV6IikohOYftlTbgOUpWKxz4Gydw4+gg61e8IimX3u2RcuKKAjhFQZDAw7M9eG/H3NUonH9Rv7sjdrBnQ55kx8pbFZr3K/oisbjnFLgZOZhB3p6gXbgPY6uvWpS7y03DsGGTsz12Fn5jrUj2qCOH0tZJSkokjMRx1DffSsdyU61u6NUqkYy5K/g8wkXF5/mCrdqlgsQpQQ7Zx9idLFuK3VAGwXySX2KqWb0la4BXRx+trOi22MrgZmdXkDbeI6YWCjq1XBnKe0031ZW7A+bQme6OaeRrXuwmIMbjxOM0XMk8Mae6GtT13qMf1Ky34PxTMiQaE1D4/vuAHd6/bHuaLTHivfJhaewODG45zfK2c6korKZ4sCf0hMdFuv62pD2jLcpJi1zS5N93s2ceGpj/B8z8+h43UolUrwzcm3/dpvMaHgMIqs+W4z/TnmTOz3sm6vMjAwfHjkKdza9hE0jW2NDWlLy+W8WxWsOP8Trmg4WrX2U7ltgfL6oCy+U2TNr7Q9dSUmYmXKL1iZ8gt4ToDA6fBU9w81152ll6SoZhLzrTn4+cwc/HxmDprFtkW3Ov0gM8lemIrhcM4OnMw74Nye40TefhzOUa/rfffQIxjR5HrITMbaC3+iVVxHjwOEyjVyBZZcbM/4FxvTlju3pUktTtKsBLss+TuMbHqjcw3gmYKj+ObkW+hep7/bWugxzSbjaO4e1bYifyV/i1yL+zYsSraMmf1eXxNuKKAjhFRr+7O2YFKru90es8oWfHj4Sc00qVLFSK6yKMGR3N0e1+kkFZ1ERskFZ7pikTU/ZGnJmaWpbttz5FoysT5tKdanLXV73aa05RjR9Hq3x/45/zMax7TwWilt+fkfnT9XRukFHMvdg84aFcgcrm0xTfXYwezt+PTo83ip9zzVhXz5uYU4lrcHS5O/w3Utp6PImo8fT3+MDWnLcCxvH2Z1ed352oySCyiRij2mbGrdjOzP3hLQDKA/6XnhzCQWaFaKc5XoI935bEHZ06HLU4E1F7sy/3O72Qzk93ksbw+e3zMNHWv1xJHc3R4DRyWZSdifvQVXucxsb0r72+OWFJXJLJXg24S3K7sZ5U5iIuYefw1v9/vJ7fEcH/suKmmlW1YGmUmQmYQvj72M9/r/plomoDWT7CrFdEa1tQIDw/uHn8DwJpPAwLA+dYnmAEaxWIS/z/3g/P5k/gFcLD6vmQq/KPFrrE75Ha3iOsAileJM4TFVWnhyUYLqOmCRzFiSvADr05bh+lb3oEQ04bezX0BmEjZf/AfXt75UkXJYk4m4qtE4t+PTS1Lwz3n333V1ob2IghBCqolTBUfcKrQBwPwTb3q8gCtn6JS8XVBlJuGzYy/idP4RnC44go+OPOO2KXpF+PvcD243mKVSCVan/IZlLnvmKRVYcrFCsWHuxrTlAX3usdw9eP/wEzCJtgISFulS8Y6E/IPOvbh+OTMHt28YiAe2XoMN9kISW9NXYs7R2ThfdAZHc/fgjQMPYHv6v5qfUywW4XThUdXjEhOxOW2F6vFfz3yGpEL3lDWLVOpzzUh1kFh0UrXRsPvzlTdD58uvZz5HgSUPgG3gZEnStwEdf67oFP698IffwZzDb2e/QK7ZNhCUXHQKS5O/C+h4EnpJRSfc1gcey92jml32FdCdyj/s9fmKlmvJxPyT6srG3rYO8KbQmoelyQuwLPk7v/dDBaC5jji5MAFLkhfYt3TahYSCQ5prfLWWGuzN2oRisQhpxcn4/NiL+DbhbWcq8MaLf0OS3d9HmbL5w6kPAirAE0loho4QUq0xyPj6+Gu4v/MriNHVwK9nPvda7MJbaXaZydiTucHr5yXkH8QLe9XbM1SUiyXnsSDhPdza7hFIsoivT7xm28LDmoffz36JG1vPcEuVuWBKwrwTr6nKfO/IXIvJpTMRb1+/Zpud2Ipe9QapCq6cKTiG9w497qzAeN50Gm8ceADXtbwTxWIhfj7zqdvrtfaF3Jq+yi1Y3pO1UVUJE7At3vc0I7IudTHGNp/iTN88XXAEy879gH3ZW/B6n++dC/i3pK8Kam/KSGGWSpBWnKzaUN4hubBiC6IEIqP0Ah7dcR3axHXCqYIjfpXMD4Ws0ot4aNu1aBDdFBeLz/mVqknK3z/nf8Kx3D2oaairWTW5VA6PGTpXOzLW4J/z3XFN86kAbOn7KaazFdqGTWkrMLn1DGe6viSL+PL4K34VaUrWCOhc96dVSi9JwY+nP8Yd7bWreh/I3qa5tVN1QQEdIaTaO5CzDfdvHQvGZJ83YMqUS1cpprMwiYWhbl7IrbnwBzakLYVkT99xWJw0H6tSfkVtQzxMYiFM1gKPFb/MUgnePjgL1za/FSVSMdZdWIwLxYnoEz8ED3d507lh+wVTIt4+OEsVEJ7MP4B3D3ne+NeXFNMZzWqGWuvnHC6WnMfHR57Ftc2nIsecie9PvQ+ZSThXdAqv7Z+BUU1vRI45k2ZVXCQWntAM6FJNSarfaVVTLBbhSAj3BvOXxMRy2S6GBEdZPMaVsiiKK1G2IiG/YrbmCNQPpz7A5osroOP0OFVQ8bOI2eaL+On0p7il7UPgwGH+ybf8Xlt7puCI2355OeYMHPSwbYbDypRfcLHkPO7v9Irb/qiiLLpVu62OKKAjhBDA73Uu3lIuK+OCWlae0lKKxSIUi/6lgaaYzmLuidfcHtubtRGz99yGsc2moFgswrLk70NSrVTL7swNGKdYq6e1fk7Zvr1ZG1WPnyo4HFa/v4pytvA4BjVSb/5eldMtCQmUtxnc43n7qvTghbc9QCvCivM/YkPaUlhki8d9MJs2aYz/1tjS9Hfu2oPb75wBk1iI+SffxK1tH0GxWIR5J9/wa2Zvf/YWPLv7FjzU+XV0rtMHALDw9IcBp0dHGgroCCEkAMptC1xVRlnrqijFdDakexR6sitjnVtAl1Z8rtIq0UWqJA83i4kFFNCRyOEtoNufHXzF26ZNGuO2aVPQq2cPdO7UAQaDLe17zudz8dkXX7u99qEH7sOsB2dovY3T4iV/47nZL/v83Fq1auK+e6Zj2JDBaNq0MQRBh+zsbOzbfxBfz/8Ox0+4z1p27tQRM2fchb69eyEurgYyMjKxZt16fPHVfBQUeM4+KWtmSsMrDBj5RkMADTEBtnWukiShsKgIZ88mYvk/q/HLr39Clt3X8uaYM/Dq/vvQosZlKBGLnHsWThh3NabcfCM6tG8Hg8GAvPwCZKRn4OjxE1i0eCkOHrp0jT559NJepQcPHcFNt1xaCuEagGZmZWHQkDGqx91+/uJiJCefw79r/sO33/0Is1k7sC1PFNARQkgAvF34aYanYiUUHMLqlN8xptlNKBaLsCDhXd8HkYAkFmqnqdEMHYkk3gbqQrGFSceOHXDnHerKv2Ulir5nsvR6PX78fh7aX+ZeSbJRo4a45urRGD5sMKbcepczqBs08Ap8+flHMOgvbffRrFlT3HnHNAwaeAVumXYXCgvLv4iXIAioXasWevfqid69eqJN61Z47Q3tc7trYZUH778XDz800+35BvXj0aB+PLp27Yy0tItuAZ2rHt27YuCVA7B1m+eUfW9iY2LQuVNH53+zHn2qTO8TDAroCCEkAJ6KohSLRbhg0t7Pi5SfBQnvYHHSfBSLRR7TfUjZlUhFSCs+h8YxLdwe97WlASHhxNNAXahm/UtKSrBl6w7sP3AQnTp2wMgRQz2+dtFfy7B9h7pwy7tvvYpmzWxb3qxdt8HnZ1416ApnMJefX4DX33wX+QWFeOyRB9CpYwdERUXhhusn4PU33wMAvPLS885gbu68Bdi1ey9unnw9Ro8ajsvatcWjDz/gMbAKhWPHT+D1N9+DIAi49urRmHLzjQCAyTdMxDvvfQyLxXP1ypiYaMy4904AQElJKT6Z8yWOnziJ2rVqoWXL5hg2dDAY874+/v4Zdwcc0E297W7o9XqMGjkM06beDAAYPWo4GjVqiIsX0wN6r2BRQEcIIQHwNJJ7puAoGDyXeCflJ9+SXdlNiGiJhcfdArr0khS/11kSEg7MHqpchiLdEgC2bd+Jbdtt63ufeGyW19empV1EWtpFt8c6d+roDObOn0/Bps2+N6uPq1HD+fX2HbuwbPlKAEDTpo3x0gvPAgB0gi0MaNe2DZo1tW3anZJyAR9+/BkA4PiJkxg9ajgAYNJ143wGVgDQrGkTzH7uSQzo3w8lJSVY8c9q/PrHIp/tLSwswt59BwAAh48cdQZ0RqMRNWvGISvL83m+Xdu2MBptVYo3bdmKBd+7b7Mzd94CREVFef38y/v2Rt8+vbBnr/8bjjvau2PnbkwYdw1q1owDADRq2KDCAzrah44QQgLgaSSX0i1JpFLuwVXV9uQiJFieqlzuy/J/Q/rydOstk51f//Lbnz5nmwBbsGG12lIzrxjQDxPGXY0hgwfhphsnAbCtVVv+j20rmLi4S8Ffccmla1yJy9exsbHo0OEyr59Zq1ZNLPx+HoYPG4KYmGjUq1cXt992Cz58z/811YIgYPSoEc7vs7KykZOT6/UYU/GlojVXDuiPmydfj4YNG7i9prTUcyXTw0dse5feP+Mej6/xheM459cZGZleXlk+aIaOEEIC4GmGjgqikEi1IW0ZRja9EU1jW6HQmodl5zxvQk9IOPKUSn88b18Ft0StZs04XHvNWAC2oGTR4mV+HZdyIRVPPfMCXnj+KcTH18N777zufO5kwmm8+fb7ztmopORzkGUZPM+jbZvWGDJ4EHbt3oPpt9/q9p6NGzXE4cNHPX7m3XfejiaNbXuTpqRcwPsfzoExyohnnnzUZ3v79+vrVqgEAEwmE1569S1VURSl5OTzuJCahqZNGiMurgZefXk2ANts57Ydu/D7H4tx4KDngagv536LL+Z8gEEDB6Bbty7Iyc7x2V4A6NO7pzPl0hEUb96yDamKGdaKQAEdIYQEwNOFvypuPEtIKJRIJjyzawqa12iLjJJUmMSCym4SISGltY1LekmKX2X0AVsBku7duqged6TkBeP6SRMQHW1LF1yx8l/k5fu/DczF9HSkXEhFfHw9t8fbtG6F0aOGY/eefZAkCbm5eViybAWunzgegiDg6y8/0Xw/o8Ho9fNGDB/i/PqV199xpobqdDq88eqLfrfbwWy2IDYm2ufrRFHE08++iE8+fMftZ23cuBFumDQBN0yyrRVc+NOvmsdv3rINh48cRbeuXfDAzHvwup9rBX9e+I3b97/9sRjvvPuRX8eGGgV0hBASAK2ALrM0DQVW7ykhhIQzkVkrfb8rQirS9vR//X5tg/rxqpt7AOjQpU/Q7Zhy0w3Or3/+5Xe/j2vTuhW+//YrGI1GnDmTiAdmPY6c3Fy88r/ncc3Vo3HrLTchPT0Dc+ctAAC8/OpbsFgsuGHSddDrbeFBwqnT4Hke7dq2AQAUFHrfnqC5fZ0fcCmNEQAOH/Y94OkoisLzPDp2aI8nHpuFunXr4K03XkbCqTOqLRaU9uzdj7HjrseYUSMwbOhg9OndE3Xq1HY+/8Rjs7Bk2XKPlTq//OobfPHZhxg+dDD+/HOJz/Zq6dG9K4xRRpiKPe9XW15oDR0hhARAa63F+aLTldASQgghobInc6Pz6yJrAVac/6kSW2Mz8MoBaN2qJQDbXmlHjvpfXXbC+GuchUIWL1mGpORzKCgoxLcuBUNcq22azWa89Mqb6D9wOG64aRpGjJmA8RNvhkFvcL7m9OkzZfo5/Fjy5yyKsnvPPiz86VcsWWrb700QBIwdM9KvzyksLMKfi5fiwYefwBVXjcS9Mx9GSYntmh0dHYU2rVt5PHbd+o04edK2DcLMGXf59XkduvTB0JHXYvceW2puxw7t8fL/nvPr2FCjgI4QQgKgNUN3jgI6QggJa3NPvIr1qUuxN2sT3j/8OAqteX4feyE1DR269FH9F6ypUy4VQ/kpgNk5AG6zUzExMc6vY12+dn3cwWQy4cjR40hJuYCRI4ahRYtmAGyzdRdS07x+5vmUC86vu3Xp7Py6e/euAbUdAFxqjKB2rZpeX1urVk30UHwGYwybNm/F2cQk52OCIHh9ny+/ts2ydu/mf3vT0i7iuRdecRagGTNqBDp17OD38aFCKZeEEBIArYDuWN6eSmgJIYSQUCm05mHuiVfL5b3r1KmNfpfbAjzHjBtg2y5gzGhbRcddu/ciNzfP+Vzjxo0wdMggAEBOTi7+WamdAtrv8j5Y+N3XAIDFS/7Gc7NfBgCcPn3W+Zqpt0zG+ZQLyMvLw6wHL22+ffxEgvPrmydfj549u2Pbtp3Iy89D925dce/d053Pf/HlfJ8/53/rNznTM1+c/Qw++GgOjEYDHnv4AZ/HxsXVQJ/ePcFxHDp0uAwTxl/rfC4x2ftegLVq1cTvv3yP/QcOYe269UhIOA2rKGJA/8vRqWN7ALYZSMcMnCerVq/F2QeT0KZNK5/tdXX+fApWr1mLcfbiNXffdTuefHp2QO8RLAroCCEkABITsSdzI/rWty3+Ti46hcM56k1gCSGEEAC4rF1bfPqRutDG1WNH4eqxowAAt02/D7t2X6ryePPk66HT2W7T/1y8FFarNaDPXPzXMky79Wa0atkCdWrXxttvvOz2fFFREb6ae2ndX1SUEddPHI/rJ45Xvde33/2IlavX+PzMb779ARPGXY1GjRqiRYtm+OSjdwAAiUnJqsIsSp07ddRch3ghNQ2L//Kvsmevnt3Rq2d3zefmzlvgc20bYwxz5y/AO2++4tfnuVrw3Y/OgG7s6JH48KM5FVrtklIuCSEkQHOOPo/fzn6Bv5K+wVsHHqINxQkhhISMXq/DjTdcB8C2X9yvv/0Z8HuYiotx8y3T8c2ChThzJhGlpaWwWkWkpV3EkqXLMXnKHTh95tIs3sFDR7Bh4xakp2fAYrEgLz8fW7buwMwHH8U77/lXuTEvPx+33nEv/tuwCcXFJcjNy8NvfyzGI48/E1DbS0tLkZiYhB8W/oKbbrkDBQXei7Gkpl7Egw8/iV9/+xPHjp9AVlY2rFYR+fkF2LlrD554ejY+/3KeX5/99/KVOH8+JaD2AsCRo8edAbler8Odd0wL+D2CwbXv3NuPpYrlLzY2Fvt2bULvfoNhMpl8H0AIIYQQQgghESiQ2Ihm6AghhBBCCCEkTFW5NXSxseqKO4QQQgghhBBSXQQSE1WZgM7R6M3rV1VySwghhBBCCCGk8sXGxvhMuawya+gAoEGD+jCZKn53dW9iY2Owef0qXDVsbJVrGwlP1KdIeaB+RcoD9SsSatSnSHmI1H4VGxuDjIxMn6+rMjN0APxqcGUxmYqpWAsJKepTpDxQvyLlgfoVCTXqU6Q8RFq/8vdnoaIohBBCCCGEEBKmKKAjhBBCCCGEkDBFAZ0PFosFcz6fC4vFUtlNIRGC+hQpD9SvSHmgfkVCjfoUKQ/VvV9VqaIohBBCCCGEEEL8RzN0hBBCCCGEEBKmKKAjhBBCCCGEkDBFAR0hhBBCCCGEhCkK6AghhBBCCCEkTFFARwghhBBCCCFhigI6QgghhBBCCAlTFNARQgghhBBCSJiigI4QQgghhBBCwhQFdIQQQgghhBASpiigI4QQQgghhJAwRQEdIYQQQgghhIQpCugIIYQQQgghJExRQEcIIYQQQgghYYoCOkIIIYQQQggJU7rKboCrBg3qw2QqruxmEEIIIYQQQkilio2NQUZGps/XVZmArkGD+ti8flVlN4MQQgghhBBCqoSrho31GdRVmYDOMTN31bCxNEtHCCGEEEIIqbZiY2Owef0qv+KiKhPQOZhMxTCZTJXdDEIIIYQQQgip8qpcQEfCxwjBiisEEfslASskPQCusptECCGEEEJItUIBHSmTPryIV4wlAICxOitKzBz+k/SV3CpCCCGEEEKqF9q2gJTJFYLo9n1/xfeEEEIIIYSQ8kcBHSmTOI65fR8D5uGVhBBCCCGEkPJCAR0pk1hFABfDUUBHCCGEEEJIRaOAjpRJDUUAF11J7SCEEEIIIaQ6o4COlAnN0BFCCCGEEFL5KKAjZVJDsUNBNK2hI4QQQgghpMJRQEfKRDkjF01b0BFCCCGEEFLhKKAjZVIDyjV0NENHCCGEEEJIRaOAjgRMBwajMuWSA3gK6gghJGwJYHhCX4KV0QX42GhCXciV3SRCCCF+0AXy4usmXFvmD1q6bEWZjyVVi3J2zsEIoKRim0IIISRE+vMiJumtAIC+goSb9RZ8aY2q5FYRQgjxJaCA7u03XgZjl27mOY5z+16L4zUU0EWOWA/r5WLAUAJaTEciSxdeRBSAfbIARv2bRLCOguT2/WW85OGVhBBCqpKAArrnXnhF9diY0SMwdPAgbN+xC3v3HUBWVjbi4+uhb59eGND/cmzYuBmr1/wXsgaTyqfcssAhmmOgrEsSSe7Sl+IuvQUA8J+ow/8sMZXcIkLKT03FCZzm5gghJDwEFNAtWbrc7fsRw4di4BX9cfd9D2Hb9p2q1w+8cgC+/OxD/LFoSVCNJFVLrIc952hzcRJZGCbrLM7vhutELLBKSGRCJbaJkPJTS1W9mEboCCEkHARVFGXmfXdi5ao1msEcAGzdtgOrVq/F/TPuDuZjSBVTw1NARxd/EkGMAOIUGZYDBLFS2kJIRajJ0QwdIYSEo6ACunZt2yLtYrrX16RdTEe7tm2D+RhSxXhKuYyhfEsSQbS24mjEUdU/ErmUKZc0SEcIIeEhqIDOVGzC5X17e33N5X17w1RsCuZjSBXjqSgKbS5OIolyaw4AaMTTDS6JXKqUSxqkI4SQsBBUQLdu3Qb06tkdL7/4HOrWreP2XN26dfDK/55Dzx7dsHbthmA+hlQxnrYtoIs/iSRa/bkxzdCRCBanmXJJ53VCCKnqAiqKovTBx5+hV88euPmm6zFp4jgkn0tBTk4O6tati5YtmsFgMODUqTP44OM5oWovqQI8FkWhGToSQaI0+nNTToYABom2LyARRgBTrRkVOMAAwKJ5BCGEkKoiqICuoKAQk2+5A/fefQeuG38tLmvXBkAbAEBKSiqW/r0C87/9AaWlpaFoK6kiPBVFoTV0JJJEafRnI2ebpUuhSpckwsR5ybyw0AAGIYRUaUEFdABgNpvx2Rdf47MvvkZsTAxia8TCVGSCqbg4FO0jVZDXfegIiRBaAR0AtOJlpEgU0JHIoqxw6RDFAfl0aieEkCot6IDOlam4mAK5aoD2oSPVgacU4tacjC0V2xRCyp2yIIoDrY0mhJCqLyQBXaeOHTDu2jFo07oVoqKicOc9DwAAmjRuhB7du2Hbjp3Izy8IxUeRKiDWw+MxNENHIojRywwdIZHG2wwdxXSEEFK1BR3QPfXEw7jzjmngONtwNmOXzvwcx+H9d1/HO+99jB9+/CXYjyJVhMeNxemqTyKIpxm6VrxUsQ0hpAIo96BzoPM6iTRxYLhPX4oWvIxixqEQHNJkHiskPTJYUMXfCak0QfXc6yeOx13Tb8OGjZsxYdIUzJ23wO35C6lpOHT4KIYPGxxUI0nV4nkNXQU3hJBy5HENHSeDp5tcEmE8zdBRQEcizTOGEkzSW9FHkHCVTsQ1OivuNpjxhdEEHfV3EqaCCuim3jIZZ84mYtajT+PU6TOwWq2q1yQmJqFlyxbBfAypYjyvoaMTIYkcUR4eN3JAI0ovJhHG0xo6re07CAlnvQTtLItGPEMHysAgYSqogK5tmzbYtn0nJMnzH0BWdg7qKTYdJ+GLB0Oshws8VbkkkSTKS39uxdFFn0QWSrkk1YW3LZZqVGA7CAmloAI6SZKg1+u9vqZBg/ooLi4J5mNIFRJTxucICTeeUi4BKoxCIo/XoiiERAgdGPRe+rSRBqZJmAoqoEs4dRoD+l0Ontd+m6ioKFw5oB+OHDsezMeQKsRTuiVAI7kksni7kW1NAR2JMLSGjlQHvrZX8jaQR0hVFlRAt2jxUrRq1QKvvPS8aqYuNjYWb7/xMuLj6+GPP/8KqpGk6qjh5WRHKZckkni7kaWUSxJpPAZ0dF4nEcRXf/a0dpqQqi6obQsW/bUMV1zRHzdefx2uGTsKBYVFAIA/fv0ebdu0RnR0NP5a8jdW/7suJI0llc/7DB1g27CIcnRI+DN66cYteRkcGBj1dRIhankYwKAbXBJJfM04U8olCVdB70P35NOzsXPXHkybehMua9cWHMeha5fOOHM2EQt//BW//bE4FO0kVYSnLQsAgOcAIwBzxTWHkHLj7cIfwwENOIZ0RgEdiQw0Q0eqA19rQn2lZBJSVQUd0AHAH3/+hT/+/AtGoxG1asahyGSiQigRqobPkyGDmWYtSATwtZYiDgzpFdQWQsqTAczjPqK0pohEEm8VLgHv1Y0JqcpCEtA5mM1mZGTS/Ewk85ZyCdhmLvLofEgigM+RXI6B7nVJJIjzmUpPSGTwmXJZQe0gJNSCCugaNWqIVi1b4MDBwygtLQUAcByHe+66HcOHDUZpqRnf/fAzNm7aEpLGksrnLeUSoIpoJHL4mpmgtUUkUnjagw6glEsSWTzNRDvQjDQJV0EFdI/Muh/Dhl6FQUPGOB+7f8bdmPXgDOf3l/ftg1um3YnDR44F81GkivA9Q0ezFiQy+Lrw040uiRS1vPRlGrggkcRXwOatGBYhVVlQ2xb07tUD27fvgiiKzsduveUmnE1MwtCR12LylNtRUlKCu++8PeiGkqrB27YFAKXnkMhhpNloUk14KogC0JoiEllifG5bQP2dhKegArp6desiNS3N+X2njh1Qt24d/PjTb0hPz8CRo8ex9r8N6Na1c9ANJVVDLM1akGqBqWYmTIqu7WuNHSHhwmvKJd3gkgjia9CZ7mFIuAoqoON5Dhx36S369esDxhh27NztfCw9PQPx8fWC+RhShdTwcbKjiz+JBAbYtuFwlavYooD6OokU3lIufaUeExJOfAVsVBSFhKugArrUtIvo3q2L8/uRw4ciMzMLiUnJzsfqx9dzbjhOwp+vkr8xdPEnEUArWMtl7qdLWltEIoXXlEsauCARRHluNyszL6i/kzAVVFGUf9f8h5n33YVPPnoHFrMFfXr3xE8//+72mrZt2yAlJSWoRpKqg2boSHWglU6pmqGj1BwSIbwHdICt0hWN1pHwp5xxzmMcGrr0fyqKQsJVUAHdNwsWYuCVAzB65HAAwMmEU5jzxVzn800aN0L3bl3w9fzvgmokqTqU2xaYmfsJkG5ySSTQGqXNU9zQ0kguiRS1vPRlnrOlodEOsyQSKAedcxmHhi6P0XmdhKugAjqTyYSbp07HZe3aAgDOnE2ELMtur5n1yFM4fJS2LIgUyhm6TMahmctjVOWSRALlDJ2ZAcWKGToqikIihbeNxQHbTbCZZuhIBFDO0OWCB3DpvpXO6yRcBRXQOZw6fUbz8dS0i0hNuxiKjyBVAkOM4pFMxqMZJOf3NENHIoFqnQWAEsVrfK0nJSRceCuKAthugvOou5MIoDVD54pm6Ei4CqooCqleogDoFKNXWYqTId3kkkigvKiXMA6lNENHIpS3bQsAusklkUM56KxeGw2A+jsJQwHN0H3/7VdgjOGZ519CenoGvv/2K7+OY4xh+t33l6mBpOqI1RjFzVJU/qMS1yQSqFIuwaGE1tCRiMS8FkUB7DfB1N1JBFAuC8lj6psWAwBLhbSGkNAJKKDrd7ltn7noqCjn9/5gjK4EkaCGxhU9k/bmIhFINUMHoETRtamvk0gQDcDgYyCOtuggkcJXyiVgO/9baM0oCTMBBXSdul3u9XsS2ZQFUUoZUEgBHYlAyhm6UsahVDlDR9d7EgG0ZucKGFCTqheTCKTsy1ozdNGc7W+AkHASkqIopHpQFkQp0khDo5RLEgmUAxOlqLwZukacjJt1tgSgX0UD0hktfSaho1w/JzIgm/GoyV2q/EfVi0lkYKrZ5lyN86mRBqZJGKKAjvhNOUNnYhxKKmGGzgiGtryEs7KgmjUhJBSMiu8ra4aOB8MbxmJ04G031z0FEXeXxkKmfk9CRDlDVwhONXhB60VJJDBAXditEBwszD3tmFKMSTgKSUA3/tqrMWniOHTq2AE1asSiqMiEY8dP4q+lf2P5ilWh+AhSBSg3FTcxjVLu5Zya04iTMT/KhNocQ6rM4SFzLDJoxoKEmDItp0RrNroCbnI785IzmAOAy3gZfXkJu2QaiyOhodyyoIBxKFZlXlBAR8Kf1jm7lNm2pTG4PBZFRYBIGArqroDneXz84dsYOXwoOI6D2WxBRkYm6tWrhyuv6IcrBlyO0aOG45HHnqHCKBFANUMHTrXZsi01hwHlNINwp96M2vZ2NOEZZulL8aJFmQxKSHCUMxJmZrvwuzJwgAAGqRxny64SRNVj1+gs2GWhgI6EhnKGLl9ri46KbBAh5URrSUgJbP09zuXvQJmhQUg4CGpq47ZpUzBqxDDs238Qt0y7Cz37DsSIMRPQs+9ATLn1TuzddwAjhw/FbbdOCVV7SSVSzr4VMfWshY5zH+kKJQEMgxQ3uMN0Ijrz6pteQoKhTKcsgTrlEij/G11lfwdsQZ5WxVlCyqIW1CmXpYrX0AwdiQSaM3SA6txO/Z2Eo6ACuknXjUNS0jlMv/t+HDh42O25g4eO4M57HkBS0jlcP2l8UI0kVYPywl+ksdYCKL9UtK68pEoPAoCZejMoP4KEknKGrhRQzUYD9tScctKCk9DSJd3SwcgBwwVruX0uqV5qa2y0rE4vJiT8KQO1YgYwcDArXkczdCQcBRXQtWrZEv9t2AhR1J4hEUUR6zduQquWLYP5GFJF1FWcDHM0LvxA+VW61Eo/A4DegoT+vFQ+H0qqJe1tC9TKcx2dp/4OAFfrKKAjoVGHcx80yNNKuayAGYsoMPTjRVyns+BefSke1JeiP2VfkBBSDkw4ZuaUxd2oCBAJR0EtxLBarYiO9j52Fx0dDauVbj4igTqg4yvwJpdhkJdZiZmGUuwqjQWj6n8kBLRm6KywlXTXVVA1NK10S4dugoTmnITzTCjHFpDqQDlDl8c41bq68i4A1ISTMcdoQkPe/XNu1lnwrDka22R9uX4+qR5Uxa7s3ypn6CpiAIOQUAtqhu74iZO4eswoNKgfr/l8/fh4XD1mFI4dPxHMx5AqQmuGjoFDseLcVx6VLltxMprxnt/3Ml7GYC83wIQEQrUPHeMAjbVF5VXVtQ5kdFHMOkuKj6JZOhIKWgGdesai/AhgeNlQrArmAIDngLv0ytttQspGOf3gyDBSzkhTyiUJR0EFdAu+/xG1a9fCot9/xJ13TEPXLp3QqFFDdO3SCXdNvw2L//gRtWrVxILvfwpVe0klqqtIzcm2nwQrYr2FcrYiQ+ZwRnbvvv0poCMhokq59HDhL68b3YGCCN7lo0wMWCq6z1KMFaygtaMkWLWhDugqsijKXXozOgvqtaIOHQUZHThKqSfBUw7UOdZFUxEgEgmCSrlcv2Ez3nn/Yzzx2Cw89cTDbs9xHAdRkvDO+x9jw8bNQTWSVD4jGGIVN7m5joBOsUtBeZwMlQHdFkmHVMbjIcOl0dv2dNEnIaJMuSxx/p+DaxBVXqk5V+nc+/tOSYelogHX6y/NyjXgGZpwDKkaxVoI8Q/TKIrCI55VTMplD17EbTqL22M5jIMeDHEu3XqCzoL3rFSahQRHeW/iCOTMoBk6Ev6C3szou+9/wtp1GzBh3NXo2LE9asTGoshkwvHjJ/H3ilVISbkQinaSSqZMtwSAbPuG3sqb3FBf/OtCRmdF+tkWSQ/lfFwbXi73fcFI9aCcoTN7GskthxvdeE5GX0UxiM2SHmcYjwIG1HRpW2teQqoUVKIFqcbi4L4mFADyoC52pfx7CIUaYPifocRtJlpkwFPmGFzBi7jHZbBulM6Kz6xRmkW4CPGXKuXSdVDaRXkVRanPybhPb0Yrl8HndMZjodWIk7QemgQpJLvTpqRcwBdfzQ/FW5EqSpluaWZAsf1r5XqLUFe5vEqnTj/bLwuqdDcDB7TmZJymEyMJkscZOlX1v9B/9l16M4wu72tlwA5JB4DDWVlAT+HSzUBrTsbW0DeBVBO1OXWqY65GymV53ODeojer1s3NsxpxUhaQzThMZ2ZnsBnDAaN1ViwVy2uXU1IdqIqi2AcIlDN05XFe58HwjrEY7RVb0XSCjB6ChKklNVBIAxYkCDS0S/xST3EizLYXiQAu3ew6xITw4m8AwzSd+6L4HZIOVnAoBIdU2f0EeBltX0CCxlSDBaVMu6+HeoauOSfhGkU11+Wi3nmhT1SsG22lsU8dIf5SplsWM8ACdVGUUA/SxYDhekWq5V5JwM/2gC2L8dgmuY83T9BZQGtGSTCU52vHzJy6KEro+9kwQVQFcw51OIbJVPyHBCkkM3TdunVBt66dUTMuDoKgnh1hjNEMXpiro7FlgYNyw+VQrqG7SWdBY8Uo7mqX4hCnZAFNXNLT2vMyVlJMR4JgANxmhIGKK4pyn97slgJXyoDvrJdWdCQyAbYNFGza0AAGCYJWhUug/FOLr9NZ3NbIyQz4wBLltu3MMlGPwS5rSTvwMjrwMk7KlIFBykY5MOGscql6XWj7Ow+GO30EbJN1FvxmNcJEs3SkjIIK6GrVqonPP/0AvXv1AMd57oQU0IW/eorUnByXG9vyqnJZFzJuV5wE90sCtsmXum2CLGAIXAM6usElwdFKLyu1P6Tq6yG88HfkJQxTFEP5XTQg2yWRQjlD15KTwYNBppsAUgZaFS4B7dRiDiwk+3zqwXCTYnZus6TDOUWq/C5Zh4syh0YuA3pjBSsFdKTM1DN02imXoS6KMlwQVdkUv1sNuFFncQ4exnHADToLfhCpJAspm6ACumeffhx9evfErt178dfS5bh4MR2SRDfUkagulDN0LgGd4p42NkQ3ufcazIhRjOJ+aomCa0nNBMUN7mW8FLIbD1I9aaWXXZqhU7w2hDMXM/Tu48QFDPjZ6n5xVwZ0Rg5oysm0wTgpE1WFS7gWunIXBXXKcVmMFqyor8i6+EljbZwMDitEA+52KY7SVxBdJ6gJCYh6DZ2N8rweyjWjPBimKwamE2Qen1qNqM/JboN4N+kt+EM0UPEfUiZBBXTDhlyFQ4eP4o67ZoaqPaSKUm0q7nLCyVecfOqE4GTYnpNwrWIt0T+SHqcUN64JitHaGPsNbgrd4JIy0pyhc/6/fBbPt+YkXC64D4YttBpRpPi8PPDIYZzb32NrXsZ5ifo7CZwyld6ZcqlxCo8CC/pGkwfDVL377Nw+ScAxWftWZIesw924dDPcmpdRj5OdFZYJCYTHjcXLsSjKCI3ZuQVWIwAO31uNbgFdbY5hos6CX2iWjpRBUGdFo9GIPXv3haotpApTBXQuF9RMxaxBfY3KaYEQwPCM0b2cdTED5lnUJ7ls8M4Nzh08LTwmxB/KdXEWBudWGOVVFGW8zn3wIptxWOShop9ylq51kH9vpPpSVrl0plxqBG6hKIwyQhDRUnF+/snq+eb1pMyjUPEnptzSgxB/qWbonEVR3F8XqqIonmbnNtsL/pxmAraI7oMZt+gtiKXiP6QMggroTpw8iaZNmoSqLaQKU25b4JpymakIqJTpNIGaqrOgg+Ki/6PV6LaWyNUpxQ0uraMjwVBuFu56OS6PbQsMYBirWFO0QtTD4mE25KxiVro19XdSRp6KophhS3F3FezgRU3IeNjgnlZ8Suax08uaOBkc9iuqXfYRqL+TslGtoSvnGTqtAYxv7bNzDt8pZuPqcgz3UMVLUgZBBXSffTEPw4cNRo/uXUPVHlIlMY0ZOteAzr0b1QGDUMaLf2tOUlWDOivz+MXL/kPKtEsK6EgwPC2cBzQu/CEYSR0iiG6bhQPAci/9PUnx99aGZqRJGXkK6ACNveiCXBv9oMGsSvFcoLi51bJHkY7ZhxdB2xeQslAGaiUuAxhurwtB/9KqbHlS5rFFMUBxQhawVfHY9ToL2nN0H0MCE9Qauvj4etiwaQt+/H4e/l6+EkePn0BRkUnztUuXrQjmo0glioH6ROiWcqmYteA5IJ5jSGeeLtQMvXgJHXkJB+VL6yd0YHjOUAKDy2ESA960RMPq5aKvDOgu42XYLvi0sJgEzqjoNq5BnLIAkK9ZCw4MBqirqLmaoJid2y0JSPWyRkiZctmckyGAOdNCCfGXssplrqJ6seueosFUL+7Li7hWkVa8SdRhk+T7FmSvYn1oQ56hORUCImWg3CP3UlEUre1ogruHGClY0cLH7JzDJ5Yo9I0qcl57BA540lCCmeZYqmBM/BZUQPf2Gy+DMQaO4zBp4nhMmjgejLn/wXAcB8YYBXRhTJluCbjP0BWAg5m53wjHczLSFTelBjCMEqy4SW9BW5cT3VpRh79FAx4wlKpSLX8VDTjho0y1MqCrwzHU55gq0CTEH8ogrdTta/83XB4iWDHbYLtl+MlqxPeiAcqLeXNOQi9FCtnfXmbnACBR0d/1nC2oS6IbXBIQpi6K4pK0U6q4ny3rDF1dyHja4L76tIgBH1rdKxZ7ksx4ZMkc4l1S+fsKEs6L1N+J/zgw1froEg9rRnnOth+pBWUjgGG6ovjPSZlXzcQ5pDIeP1iNuNelomtnQcZ4nRVLfVwPCHEIKqB77oVXQtUOUoUp0y2LmfLGlkMW49DU5XUNOIajLq9oy0l4y1iMJhrr60bqRIzUqRe6J8s8vvGyYN4hlXEoZHDbqLY9LyFTokpoJHCqGTovW3R4Ss1pwMn4n6HE+V73GsxoxMt43xJln0ljaM3JqrUSuYzzOWtRCA6ZMue2VrUNLyOJKl2SAMTCNhjgKk+1v6j/M3RGMDxqKMUwwYoLjMcK0YAMxuFpQ6nqGvKlNQpZfleq5LBH1mEsf2mGrw8v4i/QjW4k04GhFpjHtfOBMgJuhdaAS4GcWeM0bkTZA7pRAczOOfwsGjBG537cTH0pNoo6t4EWQjwJKqBbsnR5qNpBqjDlxVirZHQG49EUl2Ya4l1m9S7nRbxuLEZsABNmpQx4wxLlsTCEOw6nZcFtpmOazoKdkg4ipSuQAKkXzl+inqHTDuju0ptVgeF4nRWNOBmFjEMHXkJTjcGNf0S9X332LONR3+XvrRUvAZLe53Gk6jOCQQfAtnih/M5fyvVzgCKgU2Q4eEsv5sDwgqHEWYK9Ayejg0G5Cs/mgCRgmRhYX90jCRjrkrLZWxDBg1E6WgSox8loyMlIkXkUgEdtyJimt2CSzgIjB2wQdXjDEh30lhlag2/OKpda+y5yDIVlyPIZI1jwlKLvn5A8z845WMHhA0sUPokqdj4Wx9nWnr5hCSbhmVQXQQV0JFKoc8V78SL6CyIOSILXgigOWcpKl/ZjrhEseNpQCp3GeVFitlxxpbMyj9fN0UgIIIVsj6RzC+i6CRIe1JvxiVWZZEGId8oeY1bNWnh+LQC04iRcLWjvfqzca05puZ83uomygP4u79WGti4Iey04CY8YStGHl6DjbDeb2YxDgixgraTHDknn5wCXf5RbFpQqMi8CKYoyXWdx20/Lk3SZwxuWaLAAf469isIoNTnbWumTPtLxSdXVhRdxu96CgcKlfpMk82jAyYhx6R5DdSIacSY8aY4JaqYqRqPLFTurXKoFWhhFAMODejNu0qvn9XzNzjnslXVYI+owyuVv6WqdFStEPQ542KuR+IcDQx9ewuWCCB62vpbEeJyVhYjZyD0kPWTkiGEYd80YtGndClHRURh99UQAQJvWrTB82GAsW74SGRmZofgoUkYCGNpyMjIY5zwptuUk3KM3o48g4pQsYKHVgEOyDo8aSnGNfTR0mt62b4orrYBOWemyASejNy/ieaP6VHlM4vGt1YiTsoCZBrNzsbzMgF9EA+ZbjV6LoGhZJBpwrc7iltI5WW/BUfvNEIlM3XkR1+ssqMkx/CUasNnn75qhMcdQl5Ohh+0EmMM4JDLeeZOpvHF1PdkrUy4NHFQFSe7TmzUHKnz5zWrwu9CDai86qnQZtgxguE1vxjSdxS0FMpoDmnEMzXgRw3UiihiwQjRgntWoOaPgSgBDS05GEThkeEht9Fzh0kY9Q6dtqGDF3QbfZda3Sjq8aY5CfhluyjMZj3My75aO9o6hGF9ZjVgt6QMOEEnFEsBwlSCiKy+hESejGS+jncY5S7kBt0NHQcYXUcVYK+kQDaCQcdgo6ZAcwKCvcoZZZpdSKiVwEBncBp49DQXXhox79WbU5BjWS3pslHRoysl4wVCCzoK6/ZtEHbYFEIx9ZonCFUIRari05QlDKe4sjaWMozKoDRnX6y24WrCisUZWjIUBu2Ud1os6bJH0KArjf+OgAjqO4/Dhe29izOgRAIBSsxlRxktrnvILCvDoww+C5wV8PX9BcC2tYPU4GZfzIgrBoZDZ/iuyV/2qyzHU4BhSZB6JjEdVr6bYnRfxoqEEjXkGmQHHZAGZjMMQQXTmlPcQJPQQSlDM1CNZyo26tQM698fiOYYRGrMUa0Ud3rREO0ea37JE41erAV15CQdkocyVy4rAYbY5Bl9FmdxS3Z41lCDGwrBM0qOq/J4EMNTjGIz2Cog8bOui8hlnT++rGu2sqgQwdOAlTNdbcKXL6G4/oQTLRBGfWKJgBlCPY2jByWhqv4G4jJfQgZc1U81WiXq8brEVaVCOzLreqmqm5sCRHgd040UMVsxUbBR16CuIminH6TKHDZIe/0k6HA3gop/I1JUuB/BW7JBp8CIccGDoxksYI1gxXGd1W//rSQ0OuFlvQVtewpPmGI83d7Uh431jMTraby5TZQ4HZB2yGAcZgJVx2C0LXitcAv7N0LXiJGfhHweJAbtlAX3tM41WBnxpNeJ3jaJAgdgjCW4BXTzP8IKxFBMkK16yRKsGFas6HgxNORmteRmtORnNeRn1ORkN7PcX2cwWjKfLtlnaY7KARMaHVZqpYC+ENl1vRrMg96dtwcu4i780+3U3M2OZqMdvogGX8TL68CKiOeCEzGOHpFPdS6g2FQcAxYx0DZfnozim2h3DAIaPo4qdwegwnYh0mUNtjqlS7AHgT6sec/ws/uOQDR7zrFF4zCVtszUvY7rejPl+zvQR2xrMG3UWTNeb3YJjJQMHDBREDBREWFkpdss6fGMx4mQYFhkLKqCbfvutGDtmJH79fRHe/3AO7rzjVjww8x7n89nZOdi7bz+GDhkUdgFde07CCxqzS0pJMo91oh454NCAk1ETDKnMttdI4MGJ4+yh3fsE2G5QG3AM8ZyMWI7htCxgvyw4Ryh5+wwEYCteMk5nxd16s3PkieeArl7SvrTSEpRyNC6cyotpfU6GoHjZClGPty1RqtHURCYgMQQFHU4xAR9YotxmBaM44GljKYZKVrxjiVZV3gwtW6DW1B5ENOVt/SGb8bjIOAgABggiLhdEjzdwZgakMx5pjEOqzOMME3BK9pQW4L2/+CsGDHEcQxbjqmTpe96eKjFKZ0UnXkJzTtZM4QWACTorruBF6DntNUKejNVZsUXSYYOkV1WuLPGyrgiw3SiY7I/P0Chy8oYlGg05GXfpzYjjGBJlAWdkHidlAafKOCB0VhZgYnAGiTwHvGwswX2lPM6F4YUocjDUgC1DoSEnoyFvO1cXMQ7nGY88xuFKQcQowapZIMoffQUJzxhK8bYlClcJInrzIhKZgOWiHhyAN40lzmAOAJrwDE1498G1ewEcUpxzlelsvtbQCfZ1c8q/l8+sRvwhGlEPMtrzEhJkISSFLf4SDRirs6quUd0FCfOMJjxjiQkoBTMKzOdMZ6gZwNDHPugzSBBVVUZd1eEY2kEGBACw/f6KGXDSHtwdlQUckAQUVKGCGY5MoG6ChG68iJ685Fad1F8yA9ZIenTnRc1ZFcC2XGOS3opJeve+PQbAIzDjvMzjB6sBK+2DuZ4qXDqUMg41XH4fWuXYHtaXqmYWG2q0z8yA9y1RWCmVrXDPX6Ie1+gsblW/p+st6MRL+MAS7XVbm7KKA8NVghVteRkteBnNOBk8GDIYb/+PQybjkc44ZMi27/PBoSoFmEYwdOYl9OAljNFZ0TzAzBU9B1wpiPha87df9QUV0E2aOB6HjxzDK6+9DQCqLQsAIPnceQwdPCiYj6kUcX7eDLbiZc10kwdhxmmZR4rMQwdAx9kWuguwzcikMB57JB2OygL68iJG229Wi8HhjP0GvsA+omrkbJ20Cy9pBlxnZR6LRAOaczJG6qyID3IDWF/8naGrpdgYc72oK/fUmH8kA7qKEiYo9jzqJ0j4MaoIP1mN+EU0eN0XzNVlnIS2vITjsqBK74gDQz/BttawIy+hCSer9usLlJEDWnAyWgCAIMFxIQdsszmpjEc+49CYtwWNAoBDsoAVogFbJB1qc7ZUq3qcDAkcJNhmmNJlHqmMRzFse0815Bh6CCKuEkR0s4+kF9tnb0/JAmTY+qkMW3pLITgU2GeqCxiHXHD237n3H5iDbQuJGmAwgUMR46AHQ3NeRnNOhp4DTss8EmTBnmbLEAugGS+jLSfhMl7GEMGKBgHcFNQv443yA/pSbJN0MHrdtkDNcaPbgZPQUzFY8r3VgGJwSGQCXrTElKldWkrB4QerEfe7nHtqcMA7xhLcX6peaxIFhqGCFVcKIowccF7mkSjz4GEb/W3JS9ADMDEOxeBsaagyj7NMwEXZ9pgFtpuchpyMRhxDI05GQ942wGRhwDnGI9nez3IZj0L7ZxsA1ABDMbgy3kAz53nT/f/2xznb946BiTiOoYDZCiWFYm0Eb8/KMNq/1sE2+9vAPrhm+zewf61Y/xMokQG/iQYsF/WozTG04WWMEKzoyUtuFfqu1lkxSHCd2bPiep0FqYxHdx/rNB2Ur1OlXPrYouNWncUtcASAv0U9/rCXWc8Gj+1y6G48E5mAe0pj8Yih1G39KGCbrfvcaMJrlmhs9JJ23YKTMFpnxSjBiqY8w2mZx69WA9ZKtmJE0fZZs4a8jPocQx3737Zs/48BcJyVT9sDK9d1jTwYatv7Sz2OoR4noy7H0JSX0ZGX0NrLYJQ/Yjigl3BpqxOZAcdlATtlAQclHY7LAophqzLdiZdQAwwJQQwcwX7+rscxiAwQYftbq2cfVK7DMcTaz+8teBmdPdyjeJIpc/hFNOAf0YBmvIxuvIgYABslHZKYgHqcjA+NxW7bHPmrOS9jtrEU/UUR71qiEeMllR7wPSM9XLBiol57bbSrZJnHq5booNZ3yuDwniUaXxtNbn/3/QUJP0QVYbOkwzZJj12S4DWF2WDvi3H2cyODbZAxm/HgwBDPMTThZYwUrLjKfm1QshW70z6nlDLbvexBScA+WQczs2V0teMlRNtn50XY7iFSGI8UxqOEcc4+E2ufjY6xv+awfaBCeX/Gg0EP29+fFbae3IGX0Z8X0UsQ0YBjqM3JfmU6OO7LW9mDVuXf43mZx+kwm+13CCqga9miGX765Q+vr8nLy0ft2rWC+ZhK4U/H8KWdhzxxAOgBSbXRKmAbYegrSOjr50UZsJUsV1ZV8lexfV3GQMWIsTKf3FWOxoVBWYLayKlHuM5W0MzBhxbbWJwyqIvmgHsMZozXWbDAasS/kh4WcNCBYYAgohUno4DZgqY6nG26vovL7yFZ5rHbXiSmFS+jJSeXaa1UWTXkGRpqnFj7CxL6CyWQmboss5K332sMh4D6XhbjcFgScFYWEMsx1OYYYsGgs68rq83ZNgD2tlebg4XZBgXqcCzgG+IcZkuTDOS4Ema7MNR0OaYJz3CTzqJqr+u2BVao/w0dI78TFYvhM2SuXPcQ+kk04DJectvyozkvY1G07YJ/UNahLme7aA0URPd/nzL8KXrrO1os9tOJwX6MbL/4n5J5SAAa2YMiDrbiBMWMgwlAMeNQAlsaU1NORiNOdr5HoFJkDiZwiLX3j1JmO1dlMw5ZjEcms225ksV4ZDFb2nNbXkZP+3qfppyMhhwL6ibcX7slAZ9ZonDGfp48z4DDMrBUNKAzL+ITY7Fb31Reo1rzMlqj7GsplQGd6gbXZaCjLSfhTsVsdJLM4yNLYOllgTrHBDxhjsEVvIhHDaVulWKjOOA1QwlesACbJNvt3wTBisE6K+pzDPU52e3vHbBdo18wluJ+ZgZjCHg2ycyAU7IAI2e7ca4NVqHXBJ4DugiS7Tqlt0Bmtn1hldkJqTKHzZIeqYxHEYNzCUkh48DBNjDdmpfQwD7wrLPvUdiWl1ErhAPExyUee2QdLjLbTfUh50AecEIWVHvOZjMeD5bG4ja9Ga14GWZmC6wHCaLfg6cjdSI68CbVdjAliteVetmmowkn4xlFarHW9fZ3qwFzrUa/B4y9OSEL+EaxNx1g6+ejdKKzcEq6bFsDniQLSGcc0hmPppyM/oKIHryk2poklKI4oB1nu8+9Ab6DXX+I9mJQBs4WkBqg3l7FU0E9b1aJevxhNeCky+BGLBgGClYMsw/MGzhgvaRDVZp1DERQAV2p2Yy4uBpeX9OkSWMUFBZ6fU1VZGK2YiCOkQ3XHNxCBojgvKZLVDUSs1VaOiYLuFIQ0Y6XcFIW8JPVgFzw+MxqxCjBih6ChCOSgBocwywPC921Ui6zGOc1oChiQEYFbfQtgsO7lmhsEnV42lCqmt1pyDM8a7+I75YE9BUkv9LzWvIyWoa4+IRsv0CF4obRVzCHEH2OQzzHMEwnYhh8V7fzxcDBbR9Df6TJHJaLBvwuGhDPyXjZWKLamL6EARcYjwuybXTwhCzguCzgor0vfmYsdptVu11vVqXlut/Ycqq1FtEcQw1mWyviaqloCLi4T2A4vGWJRjPO5DZTYuTsezuG4PfiKtC+owzCeMfss+bfUPmcS23rdlzemwOaeBhtrgyJMo/Voh5rJL3XdPBjsg4vmaPxlrHE7xuZYga8YolGI46hPS/BaC9MoTUKD6gDOpPie0e1YwEMzxtL3G6yJAa86fc2M8HisF3W40ipDq8bi9HH5e+X54DZhhIklvK4XmfFZI2Kg1rqcaxM93BGzvsSBn84ZsOTZB5p9vS2IsbZy/kztOIldOYlv1J0eQ6qtZGAbbDqZr6su6oFz1EIbYcc+M1yETh8qahW3YCTcZ/e7NzKwsyAA7KAbMajnyCqspSa8zJuVfz8ypRLs+J710yNpw0lqjXQb1qikMJ4XKOzIgYMS0RDyCtRfi8acYbxeFyvvo9xcAz0DgiyH1YVOg5o6ONeIJBg7qgk4BOrEcc0fjcmcPhXMuBfyYAYMAwURJwIYVZBRQuq9x0/fhKDBl4Bg8EAi0V9sqhVqyauGnQF9uzZH8zHVIpVkgGrXPKfBdimhUsBZ2pYF17CSEFEd0GExGzryErA4XJBtF0gykkus6W7RQN+5Qin2ktFH7R36N0aHVsCZ/+Zbd835WTMgqeATv3XJIFDDjjEe7gxOysLqOhRjx2yHreX6jBTX4rxOqvqJFCLY5obmgfLzIBU5kg94xBvvzBHg+GkLGC7pMNuWYdsxjlvuWNgW/NVj5PRmJPRmGNoydtSDltU8ExgVXVS5vGvqMdRWUCyLKDQpT+dZwJmlsZipGBFPY4hmfE4IwtIY5zXNN85lijMi7qU1hLDAa05ZVDofa1FFICrdRa3EWOR+b8FQTDM4PCsJQbzjaYyrVUh5SebcUiXbbN/tTmGZrwt/S5T5rBO0mO1qA8oFW6brMeHVqbKxshl6sFFiQEvmaOxXVEk532jyeONnzKgS1EEmI5AfKggqgZOfhYNmjdM5akQHB43x+AJQ6lbNkYsB8yLMnkthFCZJAYclQVsknTYZJ8180dtyOgi2IK7zryEbrwUdIp/eTkv8zgsCzgsCTgkC0gOcfG4DMbjdUs0vrEaUY+TccolTY8DwxBBxDOGEq+ZVuoZOneOlMs2nDpr5R9R77w/PGIp336/RdJjn6TDDH0pJmrcx4SShQE7JR1OMR7nZQEi4CzU09D+/wacjHoc82sAuTJIDDgl8zgg67Bb0mGXS40Jb4rBYU2YV0QPqicu/PFXfPbp+5jz8Xv43ytvuD3XvHkzvPna/xBXowYW/vRrUI2sCiRwcJ9n5HBUtlemU8w082Doykvobl+XIrr8J4GDAQw9eQm97WlQFmYr6bxW0kMG0Ja7tKbFcRq8wGzpCYckwbk+hgPDlYKIW3QWdOclXGQc/pX0+FfU4yLjEQ0GA2cLwAItdnFBo0y0g1ZABwBZMod4QfumUllmvaIUgcP71mj8JRowy1AaUCqrg4WpZxscShmwT9ZhlyTgtCwgxZ7OFehawWLYUs1SGY/DiucMsKUuNrXnfNfgGNLts051ORnX6KxuP1exPaBksP2B1wBTrSuT7DOm+2QdNks6JMgCLrPfJNS359rLsGXmxXEMNe0z1TXt+fjBzvRZ7DNnDEArTlZdHGT782dkHqftNz++Unat4AJehH6SCVgp6TXTnx2U6TMlytQcjmGS4vhNki4khSD8kcV4zDDH4iF9KQYJoscUG4kBO2QdTss8WnK22WYZtlTiJMajgHGIARBrT3Vs41inqfF+eYyzpffIPNIZjxj72s2WvBSSdPWyKmS2v6N65Zwmmc84ZNirEGbInLNoQAaz/XtkMk5zdla5xUWglooG5DIO43RWpMscVkgGnJJ53KSz4G692XmD/6k1ShXMAcAuSecxoFNWuUxWnLPr2f/2e/Dug2CJMm/fZ6viSeDwriUKBsBt43FvwVwW47BO1OOELGCCzuK2fylgO/c4KkxmM9s6ZMdwJM/Zrsl1ORntvAy0SQzIta9Fzba/j7MQUhnXduaBx1aJx1b7TacBDN15CQMEEd15EZfxstvfvuNvQatoR6As9glMx/vbfi7bz+eoAl4ADidkAUckAbkVdO5LY7ZZTVcMtsrBJ0oFvGssRhsPg96qgTrF78SZSq9zn6zIYpw9tbjiFIPDR9ZoLBSNuJIXcaUgom8Aaacis90LCWCq83MO45Ai81gn6bFG1PlVZEewr79rxMnoxkvoJYjowtvObGdkAQkyj0zGQwCg52zrMB3F4vQcUMQ4mOxtMtlT7FtwEtrzga0xTZR57LLXoshhnP26xEfMvnKBCiqgW7d+I+Z98z3uvfsOrF+zHCUltjGPbZvWoHbtWuA4Dl98NR87du4OSWPDhQwOh2QdDnkZsfwVtjz1evYF/K4dcLOfn8PAYaukx1ZJDx2Yqoy1BVxQmUzbJB1aKNIUChk8ppFlMh4dPazhqKj1c56cYQIeNcdgAC9ist6iWlQP2NJCBM6WL2+AbRR1kb3YSAdewiBBRFNORhazpcck21P4yjvNyAIOZ5iAMx4qgf4rGVDPvtYow34zqRwNNcA2wlaDs12QtIL8DJebBe8YmnEyuvMSugoS6oKhALb1R0WMs60zg20mK4XxOMd4+zq3S8WGMhnnLL8dC4aOvIQ4jiHHZT1TxaRvAV9bjBgmqKvnOShHcpXfDxRE1cDHX+W4dk5LOuPxoiUGtSBjpE7EIMGKWDDnOrFzTMAGMfAgUw/bTXwMZytWY7Z/lrcLpsG+/sYxa1Rov3g35BnacxJa2wPJdMbhIuNhZbaZ0VjH59gXyRcDuCDzuGAvBCTDViTKsUTfka7sKP5jsX/taEMrzrYuiIMttaaEcYjhbDci8Zzs/H99+/8dNzqSPd1+v6zDSfss70WZR5H9c2xnjrL1zVBUkd0k6e1rxC75RTRijaRHf17EWWZLK9ayS9IBHjIv8hRtu8B41brJFrykukFeLerLObXYFw7vWaLQjpc016xLDJhr3/c0g3G44FL6f42kx2WchPa8hEJwOG9Pzfbn56kBW2GpJvYqptn281y2vfpfeW8vYAGHPbIOe+z3GQYwXMbblg+cs/8cDLY1ToN1VrTjZGfRoBr2ATpHGmG6zCGJ8TgnCzDDNkZtZra1WWecKeocHEOV4bB1wkXG4zerAc95qFZerPgZShX3SkZ7Vs0YxWDdclFfaQFDFuOxTDJgmWSAzl71vLV9/WNjR6EqToYZHA5IAnbIOhyQdPbJCFub9fbzM0PZBvsB23nMsV7voKzDj2JoBnSiYduSKAoMZnshLguz/d/qcm7Xw1bLITtMi5eUl6Dnij/8+DPs2Lkb06behO7du8JgNILneWzesh0Lf/oVW7ZuD0U7I5Jo/6MI1XuF2jZJhyl+rkEAbIGCJ2erRF4yhx2yHjvMejTnJFyns6ItL+GILGClaFCkvjC43rQdk3UVnlIUCNsosOd/Yws42zYaIcnK45DCBKRIAv4JYMLTMQupZAKHvZX4b5sNHp9bozwWFiplygu/+/fXKC74iTKP/UFUOAtGPmwVbxeFKKC02lOpcwLoNxbnxd798TwZOAnBU8G0kLKAQwITkBDAdihG+41OvmKALVxkMR4rfMxQJ9lnFLXW4+Qpzh8SbAMyrVxSkFtyMtry7r/AqnBuN4PD8+YYfBNV5DYDITPgdUu011SqU0zAqTJsm1NkH1CtKiz2rCGl00zAaav2zyfYK8X6O3jGwJXTatfysV3yfF1RBnDKGbpoAKMEq9vaOYkBf1fwYJ0nIjicZQLOSgIQQD+0gquwegaBKgEX8nWI1UlI/uW2bd+Jbdt3huKtSBVySOOm1Fs6VYaXgKKyUi49Oc8EfObhImdTNU94pHwsFfVoz0m4TqMstTLMU87QKS0JcgNlUjnM4JzFciIXh12yDuN4dT9XplwCwDl7eW+HPoI6pbaysy8cUhmP18zReN1YAgNnu/l+yxIV9utiypNjdjtS5YDHMYlHZ0E9c6sctDErArwoMFynGNDeLunKeS9bQsouqICuQYP6GDliKLp17YI6tWsDAHJycnD4yDGsXbcBmVlZoWgjqSQiONVo7jYvI17Kvegcchin2heLkKqFw0fWKLTmZdX+XFpFUbz5twKKoRBSVrskHcZprBnVGqhIVty8DlJUci1mqFJB8DZZj3tKefQUJOyXBCRWkWCTVJ6tkh6dBXWasa81dL0ESVXVegmd20kVVuaAbtaDM3DPXbdDr9eD49z/ECZeNw7PPPUYvp6/AF98NT/oRpLK844lGh9EFTu//0/03GWUe9E5VIWUHEJ8EcFhtjka86NMzkICucy2tsSVt3S88zLvVn2TkKpmj8f0QnW/VRZGUZZur4zqxb6cZQLOihTIEZttkg73aqwbLVZ8r8zEUAZzqbJtdpuQqqpMvfPRhx/AjHvvhMViwbLlK7Fr1x5kZNpm4xrUj0f/fn0xdsxIPPTAfeB5Hp998XVIG00qzk5Zh1fNURgkiDgg67DKS/qKpxm6xEpaT0RIoHLB4wFzLGboSxEN296NykXjyrUXrhJo8IJUcf5UsXNI9jHDdZbSz0gVd8rDulFfa6OVlomGsCgGQ6qvgAO6Zs2a4p677kBKSirunTkLScnnVK9ZvORvfDn3G3zz9WeYcd9dWLJ0OVIupIakwaTiOTZe9MXTGrqqtn6OEG/SGY9XLTEen/c2Q3eKBi9IGFghum/VsdVDKv05H+duyr4gVR+HbZIOExXrRpXncWXKpdJqWotJqriAz8aTrhsHnufw9HMvagZzDknJ5/DUsy9CJwi4bsK1QTWShIcS2MqTK9EoLokk3oqiUEBHwsE3ViOKXc7VqzysDTKBQ6bs+Ub3DPV3Ega01v4re7WyKIqrVJlDJt3HBKVpk8Y4eXQvTh7dix8WzK3s5kSkgGfoevfqgVOnz2D/gUM+X7tv/0EknDqNvn16lalxJPxkMh6xnHvuOaVckkjiLTXnFM1YkDCQwXhML62BqwQrEmQB+72sDUpmPOp7qIVI2RckHOzR6N/KYj7eZui87Snsr6ZNGuO2aVPQq2cPdO7UAQaDLetpzudzNZclPfPUY+jVszuaNWuCWrVqwWq1IiUlFRs2bsb8b79HQUGhX597/cTxGDJ4EHr17I6GDRs4H+/QpY/qtZf37Y3RI4ejd68eaNioAWrVqoW8vHzs2bMPX339DU4mnC7jT+/ZpInj8fYbL7s9JkkSCouKcPZsIpb/sxq//PonZFl7j2OlCeOuxpSbb0SH9u1gMBiQl1+AjPQMHD1+AosWL8XBQ0ecrz15dK/z64OHjuCmW+5wft+0SWP8t2Y5ACAzKwuDhoxRPe7KVFyM5ORz+HfNf/j2ux9hNmvv91meAu6lbdu0xsbNW/1+/aHDRzF40JWBfgwJU1mMQyuX79NlDibKOycRxNOFP4txyKFqriRMpDIev/mxIfA5mUdfQR3QZVP1YhImLODwq9Xg3Fc3VeZwTDHQrL0Lqc2REAxKd+zYAXfeMc3v198+bQp0uku36Aa9Hh3at0OH9u0wdMhVuOGmW2G1ir7f57Zb0KljB78+c8a9d+Iqxf16g/rxuObq0Rg+bDDuuGsmDhw87PfPUFaCIKB2rVro3asnevfqiTatW+G1N971edyD99+Lhx+a6fZYg/rxaFA/Hl27dkZa2kW3gM5Vj+5dMfDKAdi6bUeZ2hwbE4POnTo6/5v16FNlep9gBBzQxcXFITs7x+/XZ2fnIK5mXKAfQ8KUbR3dpYt/VdmjiJBQKfGQmnOaZitIBLIVRlFvc0CzcyScfGk14pTMoy7HsErUaxS78jzwfLgMG88rlZSUYMvWHdh/4CA6deyAkSOGen39pi3bsHXrDqRcSIXVasXAKwfg7jtvAwB0aN8O/ftdji1bt/v83MTEZBw9ehyHjxzDKy897/P1586l4I9FS3Dk6DE0adwIj8y6Hw0a1EdUVBSeeGwWbpt+n18/b1kcO34Cr7/5HgRBwLVXj8aUm28EAEy+YSLeee9jWCwWj8fGxERjxr13AgBKSkrxyZwvcfzESdSuVQstWzbHsKGDwZiXvFoA98+4O+CAbuptd0Ov12PUyGGYNvVmAMDoUcPRqFFDXLyYHtB7BSvggC4qygirVX1y98RqtSLK6HsUkESG47KAa1wu/gdCcCIkpCrxNEOXQKnFJAIpty5woPVzJJxI4LDaS3E3TzN0RQxIDMH6uW3bd2Lb9p0AgCcem+Xz9fc/+Jjb91u37cCVV/RzzrbFxnou3OXqsSefAwAYDAafAd38b3/A7j37IEmXBuVzc/PwxWcfAgC6de3i12c2a9oEs597EgP690NJSQlW/LMav/6xyOdxhYVF2LvvAADg8JGjzoDOaDSiZs04ZGVlezy2Xdu2MNpjjU1btmLB9z+6PT933gJERUV5/fzL+/ZG3z69sGfvfp9tdXC0d8fO3Zgw7hrUtE9gNWrYoMIDOhpiIyG1StRjvahDMQO2iDr8JfqujklIOPE8Q0c3uCTyKDcXd6AKlySSmD3M0B2VhUrfriAmJhojRwxD61YtAQBms9mvOhaB2rFzt1swBwBJ5y4VPywp8VYSzKZWrZpY+P08DB82BDEx0ahXry5uv+0WfPjem363QxAEjB41wvl9VlY2cnJyvR5jKjY5v75yQH/cPPl6tzWDAFBa6jmx9vCRowCA+2fc43c7lVz35M7IyCzz+5RVmVZ6jh93NXp07+rXa1u0aF6WjyBhqgQcXvRS8p2QcOdp2wLag45EokzGoZgBMcpNxSmdnkQQT7f6hz1s6VERptx0g2pW7dy5FLz+1nsVFjCMcQmsNvlRP+PuO29Hk8aNAAApKRfw/odzYIwy4pknH/V5bP9+fd0KlQCAyWTCS6++5bMoSnLyeVxITUPTJo0RF1cDr748GwCQlnYR23bswu9/LPa6/u/Lud/iizkfYNDAAejWrQty/Fxa1qd3T2fKZVxcDQDA5i3bkJp20a/jQ6lMPbVli+ZoGUCg5itvlRBCwoXWWotiBlygstYkInE4J/PoKLjfUCXRAAaJIJ5S6f0tiKLX69G9mzol0ZGSFypWqxWCUDF/e4OvGoj7Z9wNAMjNy8Mnc770ecyI4UOcX7/y+jvOIFCn0+GNV18MuA1mswWxMdE+XyeKIp5+9kV88uE7iI+v53y8ceNGuGHSBNwwaQJef/M9LPzpV83jN2/ZhsNHjqJb1y54YOY9eN2PIiwA8PPCb9y+/+2PxXjn3Y/8OjbUAg7oRoweXx7tIISQsKCVdJIk82BUzZVEqCQmoCMuBXQXZM7jTDUh4chbyqU/GtSPV93cA9rbA/hr7X8bcOr0GdSsGYcrBvTDbbdOQdu2rfHZJ+9j0uRbcfLkqTK/ty+jRw3HB+++AYPBAJPJhJkPPOrXrFPzZk2dXzvSGAHg8GHt6pKuHEVReJ5Hxw7t8cRjs1C3bh289cbLSDh1BsdPnPR6/J69+zF23PUYM2oEhg0djD69e6JOndrO5594bBaWLFuOwsIizeO//OobfPHZhxg+dDD+/HOJz/Zq6dG9K4xRRpiKi8t0fDACDugqYxqREEKqCq2R3HOUfkYimLKi5SlaL0oijNZAXTHznGJfEbKysp2FQNZv2IyaNWti0nXjIAgCrhk7utwCuonXjcMbr74InU6H/PwC3Hf/w0FvV+BPop5rUZTde/ahbZvWuGXKjRAEAWPHjPQZ0Dne48/FS/Hn4qXgOA5XDboSn370LqKjoxAdHYU2rVt53Lpg3fqNOHnyFDp0uAwzZ9zl18/VoUsfNG7cCO+9/Rou79sbHTu0x8v/ew4PP/q0X8eHEuVMEEJIAEo0RnJTKP2MRLCVoh759n5vZcAiKnZFIozWjm6BDFxcSE1Dhy59VP+VhdFDZXjX5Us1y2k7sKm3TMZbr78EnU6HrKxs3HbnfQEFc+dTLji/7tals/Pr7n7W3XDlUmMEtWvV9PraWrVqqmp7MMawafNWnE1Mcj4mCN5/p19+bZtl7d7N//ampV3Ecy+84twXcMyoEX7v/RdKlbfakxBCwpDWSG4oNp4lpKrKAY9bS2LRW5BwWuZpRppEIPVA3e4QFkSpU6c2+l1uC/Ac1SoBoF3bNhgz2lZ4ZNfuvcjNzcM9d92OK6/oj3/XrENS8nkwxnDFgH64bvw1zuOOHjvh/Lrf5X2w8LuvAQCLl/yN52a/7Hzu8r69UbduHbdNygE4PzMnJxe79+wDANxx+1Q8/8wTAGyVND/8+DPUiI1Fn949ncf5WhP43/pNaNe2DQDgxdnP4IOP5sBoNOCxhx/w+W8UF1cDfXr3BMdx6NDhMkwYf63zucTkc16OtAV0v//yPfYfOIS169YjIeE0rKKIAf0vR6eO7Z0/k69ZzVWr1+Lsg0lo06aVz/a6On8+BavXrMW4a8YCAO6+63Y8+fTsgN4jWBTQEUJIAERw2CrpMFCwjcadkXnspYCORLg88PhPoploErm2STpcaT+vFzHgL1Efsve+rF1bfPqRutDG1WNH4eqxowAAt02/D7t27wXHcejbpxf69uml+V579u7HkqXL/frcWQ/OQP9+fVWPO9qyc9ce3H7nDADAiGGXCpoYjUa8+fpLquN8zTp+8+0PmDDuajRq1BAtWjTDJx+9AwBITEp2K1aipXOnjprrEC+kpmHxX8u8HuvQq2d39OrZXfO5ufMW+FzbxhjD3PkL8M6br/j1ea4WfPejM6AbO3okPvxoToUuU6OzMyGEBOhlczTmW4xYaDXgcXMMFUQhhJAw9445CmtEHXZLAmabY5BfSbfIm7dsw19Ll+Ps2SQUFhZBFEXk5uZh5649eOX1tzH97pkQRa0k0cqXl5+PW++4F/9t2ITi4hLk5uXhtz8W45HHnwnofUpLS5GYmIQfFv6Cm265AwUFhV5fn5p6EQ8+/CR+/e1PHDt+AllZ2bBaReTnF2Dnrj144unZ+PzLeX599t/LV+L8+ZSA2gsAR44ex67dtm0X9Hod7rxjWsDvEQyufefeVWJPgdjYWOzbtQm9+w2GyWTyfQAhhBBCCCGERKBAYiOaoSOEEEIIIYSQMFXl1tDFxsZUdhMIIYQQQgghpNIEEhNVmYDO0ejN61dVcksIIYQQQgghpPLFxsb4TLmsMmvoAKBBg/owmSp+d3VvYmNjsHn9Klw1bGyVaxsJT9SnSHmgfkXKA/UrEmrUp0h5iNR+FRsbg4yMTJ+vqzIzdAD8anBlMZmKqVgLCSnqU6Q8UL8i5YH6FQk16lOkPERav/L3Z6GiKIQQQgghhBASpiigI4QQQgghhJAwRQGdDxaLBXM+nwuLxVLZTSERgvoUKQ/Ur0h5oH5FQo36FCkP1b1fVamiKIQQQgghhBBC/EczdIQQQgghhBASpiigI4QQQgghhJAwRQEdIYQQQgghhISpKrUPXUXS6/V4ZNZMXDf+WtSsGYeTCafx8adfYNv2nT6PbdCgPp5/5gkMvHIAeJ7Dzl178OY7HyIl5UIFtJxUVWXtUw89cB9mPThD9bjZbEb33leWV3NJmIiJicbdd96OHt2715DYrgAAEBFJREFUolu3Lqhdqxaenf0y/lryt1/Hx8XVwFNPPIJRI4YhKioKh48cxdvvfoRjx0+Uc8tJVRVMn5o0cTzefuNlzecGDhmNrKzsELeWhINuXTtj4nXj0L9fXzRt0gR5+fk4ePAwPv70CyQln/N5PJ2niJZg+lV1O1dV24Du7TdfxphRI/HDwp+RdO4cJl03Hl9/+SnuuGsG9u474PG4mJho/LBgLuJq1MDced/CKoqYfvut+PG7rzHxhqnIy8+vuB+CVCll7VMOL73yJoqLi53fS7Jcjq0l4aJO7dp46IH7cCE1DSdPnkL/fn39PpbjOHz95Sfo0KE9vvn2B+Tm5WHqlMlY+N1cXD95GpLPnS/HlpOqKpg+5fDJnC9Vg5gFBYWhaiIJM/fcfQd69+qJVavX4mTCKdSPr4dbp96ExX/+hJtvmY5Tp894PJbOU8STYPqVQ3U5V1XLgK5bty4Yd81YvPPex/j2u4UAgCVLV2D50t/x5OMP45Zpd3k8duqUyWjdqiVuvPk2HD5yDACwefM2/L3kN9w5fRo++uTzCvkZSNUSTJ9yWP3vOuTm5ZVzS0m4ycjMco4mdu3SCYt+/9HvY8eOHonevXri4ceexup/1wEAVq5ag9Ur/sKsh2biyadnl1ezSRUWTJ9y2LR5K44cPV4OrSPh6Lvvf8KTT8+G1So6H/tn5b/4e8lvuO+e6Xjq2Rc9HkvnKeJJMP3Kobqcq6rlGrqxo0dAFEX89sdi52MWiwV/LlqK3r16oFGjhh6PHTN6BA4dPuIM5gDgbGIStu/cjavHjirXdpOqK5g+5cQBsbGx5dhKEo6sVmuZU0PGjB6BzKws/LvmP+djubl5WLl6DUYMGwK9Xh+qZpIwEkyfchUbEwOer5a3EURh/4FDbjfdAJB87jxOnT6LNm1aez2WzlPEk2D6lavqcK6K7J/Og04dOyAp+RxMJpPb44cOH7E/317zOI7j0KH9ZZqR/uHDR9GyRXPExsSEvsGkyitrn3K1bvUy7Nu1Cft2b8Z7b7+GevXqlktbSfXRqVMHHDt2Aoy5bzd6+PBRxMREo3WrlpXUMhLuflgwF/t2b8bBvVvx5WcfomWL5pXdJFIFxder6zPzhM5TJFD+9CuH6nKuqpYpl/XrxyMzM0v1eGaW7bEG9etrHle7Vi0YjUbtY+2PNWhQH4lJySFsLQkHZe1TgC2Xe+FPv+LAwcOwWCzo26cXpk65Cd26dcENN92mChIJ8Vf9+vHYs2ef6vEMl/NVwqnTFd0sEsZKS0qx6K9l2LlrD4qKTOjapROm334rfv1pASZNvhUXL6ZXdhNJFTFh3NVo1KghPv3sK6+vo/MUCYS//aq6nauqZUAXZYyCxWJRPW422x6LijJqHme0P659rNntNaR6KWufAoAffvzF7ft/1/yHQ4eP4oN338DUWyZj3vzvQtpWUn1EGY2wWK2qxx191Wik8xUJzMrVa7By9Rrn9+v+24AtW7fjx+/n4f777sJLr75Via0jVUWb1q3wvxeexb79B/HX0uVeX0vnKeKvQPpVdTtXVcuUy1JzKQwGg+pxo9H2WGmpWfM4s/1x7WONbq8h1UtZ+5Qny1esQkZmFq4c0C8k7SPVU6nZDIPG+hNHX3UMRBESjL37DuDgoSO44or+ld0UUgXEx9fD3C8+QWFRER557GnIPio203mK+CPQfqUlks9V1TKgy8zMQv368arH68fbHsvIzNQ8Li8/H2azWftY+2MZGdrHkshW1j7lzcWLF1GrVq2g20aqL0/9sgGdr0iIXbyYjlq1alZ2M0glq1GjBuZ99SniatbAPTMecqZNekPnKeJLWfqVJ5F6rqqWAd2JEwlo1bKFqqJgj+5dAQDHTyRoHscYQ8Kp0+japZPque7duuLcuRSYXPYRI9VHWfuUN02bNEFObm5I2keqpxMnEtC5c0dwHOf2ePfuXVFcXELrfUnING/WFLk5dL6qzgwGA776/CO0atkSMx94FGfOJPp1HJ2niDdl7VeeROq5qloGdKv+XQedToebJ1/vfEyv1+P6SRNw4OBh50LJxo0boU3rVm7Hrv53Hbp36+oW1LVu1RID+vfFqn/XVkj7SdUTTJ+qU6e26v2mTpmMevXqYvOWbeXZbBJB6sfHo03rVtDpLi2NXvXvWtSPj8foUcOdj9WpXRtjR4/E+g2bYNVYt0KIg1af0jpfDb5qILp27YzNW7ZXYOtIVcLzPD7+4C307NEdjzz+DA4cPKz5OjpPkUAE06+q27mqWhZFOXT4CFauWoPHH30I9erVQfK585h03Tg0bdIEs1981fm6d958Bf379UWHLn2cj/38yx+YfOMkzP3iE3z73UKIoojpd0xDdnaOc0NpUv0E06fWr1mBf1b9i4RTp2ExW9C7d09ce/VoHDt+Ar/9vljr40g1c+vUm1AzLg4NGtiqpQ4behUaNWwAAFj4028oKirC4489hOsnjsfwUeNwITUNgG0Aav+BQ3jr9ZfQrm0b5Obm4ZYpN0IQeMz5fG6l/Tyk8pW1T/360wIcP34SR44eQ2FhETp37ogbJl2H1LSL+Gret5X285DK9ezTj2HE8KH4b/1G1K5VExPGXe32/LLlKwGAzlMkIMH0q+p2rqqWAR0APP3c//DorPsxYfy1qFUzDicTTmHmg49iz979Xo8zFRfjtun34flnnsD9M+4Bz3PYuXsv3nrnA+Tm5lVM40mVVNY+9feKlejVszvGjBoOg9GI1NQ0zP/2B3w19xuUlpZWUOtJVXbX9NvQrGkT5/djRo3AmFEjAADL/v4HRUVFmsfJsoz77n8YTz/xKG67dQqMRiMOHzmK52a/TGlM1VxZ+9TKVf9iyOBBGHjlAERFRyEzMwt/LPoLn33xNbKzcyqk7aTq6djBttfq8GFDMHzYENXzjhtvLXSeIp4E06+q27mKa9+5N/P9MkIIIYQQQgghVU21XENHCCGEEEIIIZGAAjpCCCGEEEIICVMU0BFCCCGEEEJImKKAjhBCCCGEEELCFAV0hBBCCCGEEBKmKKAjhBBCCCGEkDBFAR0hhBBCCCGEhCkK6AghhBBCCCEkTFFARwghhBBCCCFhigI6QgghYeGHBXNx8ujeym5GQBb9/iO++frzMh376MP3Y9+uTahXr26IW0UIISSS6Cq7AYQQQqqfQAOzDl36lFNLys/E68aha5dOuOmWO8p0/Lff/YhpU6fg4Qdn4KVX3wpx6wghhEQKCugIIYRUuDmfz1U9dsdtU1GzZpzmcwDwzPMvIToqqrybFhIcx2HWA/dh9559OHjoSJneo6CgEH8sWoLbp03B3HkLkJp2McStJIQQEgkooCOEEFLhPvvia9VjkyaOR82acZrPAUBaGAU0g68aiGbNmuLLr78N6n2W/f0P7po+DZNvnIRP5nwZotYRQgiJJLSGjhBCSFjQWkM3aeJ4nDy6F5MmjsewoVfh91++x4E9W7Hpv5V4ZNb94DgOgC39ceniX3Bw71asX7sCd995m8fPuWHSBPzy4zfYu3MjDuzZikW/LcQNkyYE1NbrJ42HLMv4d8061XP14+Mx+9knsfqfv3Bw71bs3r4B/yz7E6/87znUqFHD7bXHT5xEUvI5TLpuXECfTwghpPqgGTpCCCFhb9SIoRh45QCs/W8D9u0/gKGDB+GBmfeA44DCwiLcP+MerPtvA3bt2ovRo4bj6ScfRVZ2DpYuW+H2Pu+/+wbGXzsWiUnJWL5iFSxWEQOv6I83X38Jbdu2wbvvf+xXe/r364vExGQUFBS6PR4VFYVffvwGTZs2wdZtO7B23Xro9Xo0a9oEE8Zfi2++W4iioiK3Yw4cOISJ141Dq5YtkJR8Lqh/J0IIIZGHAjpCCCFh76qrBmLqtLtw+MgxAMCcz+bi35VLcMdtt6LIZMLEG6ciJeUCAOCb7xZizcoluHv6bW4B3eQbJ2H8tWOxaPFS/O+VNyGKIgBAr9fh04/exd133oYV/6zC0WMnvLalbdvWqFO7NjZv3qZ67ooBl6N582b47oef8NY7H7o9FxMTDatVVB1z5OhxTLxuHHr36kEBHSGEEBVKuSSEEBL2/v77H2cwBwCm4mJs2LgZMTHR+PW3P53BHABcvJiOvfsOoG3b1hAEwfn4tKk3wVRcjFdef8cZzAGA1Srio0++AABce81Yn21p1LAhACArO8fja0pLzarHiotLYLVaVY9nZWfb3rdRQ5+fTQghpPqhGTpCCCFh7/iJBNVjmVlZ9udOqp/LzIJOp0O9enWRkZGJqKgotL+sHTIyMnHv3eptBnQ62+WyTetWPttSu3YtAEBhYaHqud179iMjIxP33TMdHTu0x4aNm7Frz16cOZPo8f3y8wsAAHVq1/b52YQQQqofCugIIYSEvSKTSfWYKEq254o0npNsz+ntgVrNmnHgeR6NGjXErAdnePycmJhon21xzL4ZDAZ1O4uKcNPU6Xj4oZkYNvQqDB0yCACQmnYR8+Z/h59//UN1TFSUEQBQUlrq87MJIYRUPxTQEUIIqfZM9qDvyJFjuOFmzxUw/ZGbmwsAqF2rlubzaWkX8dzsl8FxHDp0uAyDrhyA226dgpdefBb5BQVY8c9qt9fXsr9Pjv19CSGEEFe0ho4QQki1ZyouxukzZ9GmTWvExdXwfYAXp06fgSRJaN26pdfXMcZw4kQC5n/7Ax5/6nkAwPBhg1Wva93K9j4JCaeDahchhJDIRAEdIYQQAmDhj78iJiYar7/yIqKjo1TPN2vaBE2bNPb5PoWFRTiZcApdu3Ry7oPn0K5tG9SrV1d1THx8PQCA2WxRPdeje1dYrSL2Hzjo749CCCGkGqGUS0IIIQTAr78vQo8e3XD9xPHo3asHtm3fiYzMLNSrVxdtWrdCj+5d8cTTs3EhNc3ne61dtwEPPzQTPXt0w/4Dh5yPD7yyP5564lHs238AScnnkJeXj+bNmmL4sMEoLS3Fz7/87vY+MTHR6NG9G7Zt34GSElpDRwghRI0COkIIIcTuudkvY9OmrZh840QMHXoVYmJikJOdg+Rz5/HO+x9j+/Zdfr3PH3/+hftn3IMJ469xC+g2b92Opk2boG+f3hg9cjhiYqKRnp6Jf1atwfxvv1dVuxw9agSio6Pw2++LQ/pzEkIIiRxc+869WWU3ghBCCIk07771KoYMGYThI8fBVFxcpvf46Yf5qFevLq4ZfyNkWQ5xCwkhhEQCWkNHCCGElIOPP/0CUUYjpt16c5mOH9D/cvTt0wvvfziHgjlCCCEeUUBHCCGElIPUtIt49vmXYTKVbXYuLq4G3n73I6xdtz7ELSOEEBJJKOWSEEIIIYQQQsIUzdARQgghhBBCSJiigI4QQgghhBBCwhQFdIQQQgghhBASpiigI4QQQgghhJAwRQEdIYQQQgghhIQpCugIIYQQQgghJExRQEcIIYQQQgghYYoCOkIIIYQQQggJUxTQEUIIIYQQQkiYooCOEEIIIYQQQsLU/wEGKrrPvRXK+wAAAABJRU5ErkJggg==", "text/plain": [ "