random_gaussian_noise
Random Gaussian Noise Layer API
This module provides classes to build random Gaussian noise layers.
Classes:
-
RandomGaussianNoise1D
–Random Gaussian noise 1D
Classes
RandomGaussianNoise1D
Apply additive zero-centered Gaussian noise.
Parameters:
-
factor
(float
, default:0.1
) –Standard deviation of the Gaussian noise.
Example:
x = np.sin(2*np.pi*10*np.arange(duration_size)/100)
lyr = RandomGaussianNoise1D(factor=0.1)
y = lyr(x)
Source code in neuralspot_edge/layers/preprocessing/random_gaussian_noise.py
Functions
get_random_transformations
Generate noise tensor
Parameters:
Returns:
-
dict
(dict
) –Dictionary containing the noise tensor.
Source code in neuralspot_edge/layers/preprocessing/random_gaussian_noise.py
augment_samples
Augment all samples in the batch as it's faster.