Resizing layers API
This module provides classes to build resizing layers.
Classes:
Classes
Resizing1D
Resizing1D(duration: int, **kwargs)
1D resizing layer
Parameters:
-
duration
(int
)
–
The new duration of the samples
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def __init__(self, duration: int, **kwargs):
"""1D resizing layer
Args:
duration (int): The new duration of the samples
"""
super().__init__(**kwargs)
self.duration = duration
|
Functions
augment_samples
augment_samples(inputs) -> keras.KerasTensor
Resize a batch of samples during training.
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def augment_samples(self, inputs) -> keras.KerasTensor:
"""Resize a batch of samples during training."""
samples = inputs[self.SAMPLES]
# Add height dimension
samples = keras.ops.expand_dims(samples, axis=1)
samples = keras.ops.image.resize(
samples,
size=(1, self.duration),
interpolation="bicubic",
crop_to_aspect_ratio=False,
data_format=self.data_format,
)
# Remove height dimension
samples = keras.ops.squeeze(samples, axis=1)
return samples
|
compute_output_shape
compute_output_shape(input_shape, *args, **kwargs)
Compute output shape.
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def compute_output_shape(self, input_shape, *args, **kwargs):
"""Compute output shape."""
output_shape = list(input_shape)
output_shape[self.data_axis] = self.duration
return tuple(output_shape)
|
get_config
Serialize the configuration.
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def get_config(self):
"""Serialize the configuration."""
config = super().get_config()
config.update(
duration=self.duration,
data_format=self.data_format,
)
return config
|
Resizing2D
Resizing2D(height: int, width: int, interpolation: str = 'bicubic', **kwargs)
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def __init__(self, height: int, width: int, interpolation: str = "bicubic", **kwargs):
""""""
super().__init__(**kwargs)
self.height = height
self.width = width
|
Functions
augment_samples
augment_samples(inputs) -> keras.KerasTensor
Resize a batch of samples during training.
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def augment_samples(self, inputs) -> keras.KerasTensor:
"""Resize a batch of samples during training."""
samples = inputs[self.SAMPLES]
samples = keras.ops.image.resize(
samples,
size=(self.height, self.width),
interpolation="bicubic",
crop_to_aspect_ratio=False,
data_format=self.data_format,
)
return samples
|
compute_output_shape
compute_output_shape(input_shape, *args, **kwargs)
Compute output shape.
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def compute_output_shape(self, input_shape, *args, **kwargs):
"""Compute output shape."""
output_shape = list(input_shape)
output_shape[self.height_axis] = self.height
output_shape[self.width_axis] = self.width
return tuple(output_shape)
|
get_config
Serialize the configuration.
Source code in neuralspot_edge/layers/preprocessing/resizing.py
| def get_config(self):
"""Serialize the configuration."""
config = super().get_config()
config.update(
height=self.height,
width=self.width,
)
return config
|