threshold
Thresholding Metrics API
This module provides utility functions to threshold model predictions.
Functions:
-
get_predicted_threshold_indices–Get prediction indices that are above threshold (confidence level)
-
threshold_predictions–Get thresholded predictions
Functions
get_predicted_threshold_indices
get_predicted_threshold_indices(y_prob: npt.NDArray, y_pred: npt.NDArray, threshold: float = 0.5) -> npt.NDArray
Get prediction indices that are above threshold (confidence level). This is useful to remove weak predictions that can happen due to noisy data or poor model performance.
Parameters:
-
(y_probNDArray) –Model output as probabilities
-
(y_predNDArray) –Model predictions. Defaults to None.
-
(thresholdfloat, default:0.5) –Confidence level
Returns:
-
NDArray–npt.NDArray: Indices of y_prob that satisfy threshold
Source code in neuralspot_edge/metrics/threshold.py
threshold_predictions
threshold_predictions(y_prob: npt.NDArray, y_pred: npt.NDArray, y_true: npt.NDArray, threshold: float = 0.5) -> tuple[npt.NDArray, npt.NDArray, npt.NDArray]
Get prediction indices that are above threshold (confidence level). This is useful to remove weak predictions that can happen due to noisy data or poor model performance.
Parameters:
-
(y_probNDArray) –Model output as probabilities
-
(y_predNDArray) –Model predictions. Defaults to None.
-
(y_trueNDArray) –True labels
-
(thresholdfloat, default:0.5) –Confidence level. Defaults to 0.5.
Returns:
-
tuple[NDArray, NDArray, NDArray]–tuple[npt.NDArray, npt.NDArray, npt.NDArray]: Thresholded predictions