cct
CCT Model API
This module provides utility functions to generate Compact Convolutional Transformer (CCT) models.
Classes:
-
CCTParams–CCT parameters
-
CCTModel–Helper class to generate model from parameters
-
StochasticDepth–StochasticDepth
Functions:
-
cct_tokenizer_block–CCT tokenizer block
-
cct_mlp–CCT MPL block
-
cct_layer–Generate Compact Convolutional Transformer model (CCT)
Classes
CCTParams
StochasticDepth
StochasticDepth
Stochastic Depth Args: drop_prop (float): Drop probability
Source code in neuralspot_edge/models/cct.py
Functions
call
Forward pass
Parameters:
-
(inputsKerasTensor) –Input tensor
Returns:
-
KerasTensor–keras.KerasTensor: Output tensor
Source code in neuralspot_edge/models/cct.py
CCTModel
Helper class to generate model from parameters
Functions
layer_from_params
staticmethod
Create layer from parameters
Source code in neuralspot_edge/models/cct.py
model_from_params
staticmethod
Create model from parameters
Source code in neuralspot_edge/models/cct.py
Functions
cct_tokenizer_block
cct_tokenizer_block(kernel_size: int = 3, stride: int = 1, padding: int = 1, pooling_kernel_size: int = 3, pooling_stride: int = 2, num_conv_layers: int = 2, filter_sizes: tuple[int, int] = (64, 128)) -> Callable[[keras.KerasTensor], keras.KerasTensor]
CCT tokenizer block
Parameters:
-
(kernel_sizeint, default:3) –Kernel size. Defaults to 3.
-
(strideint, default:1) –Stride length. Defaults to 1.
-
(paddingint, default:1) –Padding. Defaults to 1.
-
(pooling_kernel_sizeint, default:3) –Pooling kernel size. Defaults to 3.
-
(pooling_strideint, default:2) –Pooling stride. Defaults to 2.
-
(num_conv_layersint, default:2) –Number of conv layers. Defaults to 2.
-
(filter_sizestuple[int], default:(64, 128)) –Number of filters per layer. Defaults to (64, 128).
Source code in neuralspot_edge/models/cct.py
cct_mlp
CCT MPL block
Parameters:
-
(xKerasTensor) –Input tensor
-
(hidden_unitslist[int]) –Number of hidden units
-
(dropout_ratefloat) –Dropout rate
Returns:
-
KerasTensor–keras.KerasTensor: Output tensor
Source code in neuralspot_edge/models/cct.py
cct_layer
Generate Compact Convolutional Transformer model (CCT)
Parameters:
-
(xKerasTensor) –Input tensor
-
(paramsCCTParams) –Model parameters
-
(num_classesint) –Number of classes
Returns:
-
KerasTensor–keras.KerasTensor: Output tensor