Skip to content

efficientnet

EfficientNetV2

Overview

EfficientNetV2 is an improvement to EfficientNet that incorporates additional optimizations to reduce both computation and memory. In particular, the architecture leverages both fused and non-fused MBConv blocks, non-uniform layer scaling, and training-aware NAS.

For more info, refer to the original paper EfficientNetV2: Smaller Models and Faster Training.

Classes:

  • EfficientNetV2Params

    EfficientNetV2 parameters

  • EfficientNetV2Model

    Helper class to generate model from parameters

Functions:

Additions

The EfficientNetV2 architecture has been modified to allow the following:

  • Enable 1D and 2D variants.

Usage

import keras
from neuralspot_edge.models import EfficientNetV2, EfficientNetV2Params, MBConvParams

inputs = keras.Input(shape=(800, 1))
num_classes = 5

model = EfficientNetV2(
    x=inputs,
    params=EfficientNetV2Params(
        input_filters=24,
        input_kernel_size=(1, 7),
        input_strides=(1, 2),
        blocks=[
            MBConvParams(filters=32, depth=2, kernel_size=(1, 7), strides=(1, 2), ex_ratio=1, se_ratio=2),
            MBConvParams(filters=48, depth=2, kernel_size=(1, 7), strides=(1, 2), ex_ratio=1, se_ratio=2),
            MBConvParams(filters=64, depth=2, kernel_size=(1, 7), strides=(1, 2), ex_ratio=1, se_ratio=2),
            MBConvParams(filters=72, depth=1, kernel_size=(1, 7), strides=(1, 2), ex_ratio=1, se_ratio=2)
        ],
        output_filters=0,
        include_top=True,
        dropout=0.2,
        drop_connect_rate=0.2,
        model_name="efficientnetv2"
    ),
    num_classes=num_classes,
)

Classes

EfficientNetParams

EfficientNet parameters

Attributes:

  • blocks (list[MBConvParams]) –

    EfficientNet blocks

  • input_filters (int) –

    Input filters

  • input_kernel_size (int | tuple[int, int]) –

    Input kernel size

  • input_strides (int | tuple[int, int]) –

    Input stride

  • input_activation (str) –

    Input activation

  • output_filters (int) –

    Output filters

  • output_activation (str | None) –

    Output activation

  • include_top (bool) –

    Include top

  • dropout (float) –

    Dropout rate

  • drop_connect_rate (float) –

    Drop connect rate

  • use_logits (bool) –

    Use logits

  • activation (str) –

    Activation function

  • norm (Literal['batch', 'layer'] | None) –

    Normalization type

  • name (str) –

    Model name

EfficientNetV2Model

Helper class to generate model from parameters

Functions

layer_from_params staticmethod
layer_from_params(inputs: keras.Input, params: EfficientNetParams | dict, num_classes: int | None = None)

Create layer from parameters

Source code in neuralspot_edge/models/efficientnet.py
@staticmethod
def layer_from_params(inputs: keras.Input, params: EfficientNetParams | dict, num_classes: int | None = None):
    """Create layer from parameters"""
    if isinstance(params, dict):
        params = EfficientNetParams(**params)
    return efficientnetv2_layer(x=inputs, params=params, num_classes=num_classes)
model_from_params staticmethod
model_from_params(inputs: keras.Input, params: EfficientNetParams | dict, num_classes: int | None = None)

Create model from parameters

Source code in neuralspot_edge/models/efficientnet.py
@staticmethod
def model_from_params(inputs: keras.Input, params: EfficientNetParams | dict, num_classes: int | None = None):
    """Create model from parameters"""
    outputs = EfficientNetV2Model.layer_from_params(inputs=inputs, params=params, num_classes=num_classes)
    return keras.Model(inputs=inputs, outputs=outputs)

Functions

efficientnet_core

efficientnet_core(blocks: list[MBConvParams], drop_connect_rate: float = 0) -> keras.Layer

EfficientNet core

Parameters:

  • blocks

    (list[MBConvParam]) –

    MBConv params

  • drop_connect_rate

    (float, default: 0 ) –

    Drop connect rate. Defaults to 0.

Returns:

  • Layer

    keras.Layer: Core

Source code in neuralspot_edge/models/efficientnet.py
def efficientnet_core(blocks: list[MBConvParams], drop_connect_rate: float = 0) -> keras.Layer:
    """EfficientNet core

    Args:
        blocks (list[MBConvParam]): MBConv params
        drop_connect_rate (float, optional): Drop connect rate. Defaults to 0.

    Returns:
        keras.Layer: Core
    """

    def layer(x: keras.KerasTensor) -> keras.KerasTensor:
        global_block_id = 0
        total_blocks = sum((b.depth for b in blocks))
        for i, block in enumerate(blocks):
            filters = make_divisible(block.filters, 8)
            for d in range(block.depth):
                name = f"stage{i+1}_mbconv{d+1}"
                block_drop_rate = drop_connect_rate * global_block_id / total_blocks
                x = mbconv_block(
                    filters,
                    block.ex_ratio,
                    block.kernel_size,
                    block.strides if d == 0 else 1,
                    block.se_ratio,
                    droprate=block_drop_rate,
                    bn_momentum=block.bn_momentum,
                    activation=block.activation,
                    name=name,
                )(x)
                global_block_id += 1
            # END FOR
        # END FOR
        return x

    # END DEF
    return layer

efficientnetv2_layer

efficientnetv2_layer(x: keras.KerasTensor, params: EfficientNetParams, num_classes: int | None = None) -> keras.KerasTensor

Create EfficientNet V2 TF functional model

Parameters:

  • x

    (KerasTensor) –

    Input tensor

  • params

    (EfficientNetParams) –

    Model parameters.

  • num_classes

    (int, default: None ) –

    Number of classes.

Returns:

  • KerasTensor

    keras.KerasTensor: Output tensor

Source code in neuralspot_edge/models/efficientnet.py
def efficientnetv2_layer(
    x: keras.KerasTensor,
    params: EfficientNetParams,
    num_classes: int | None = None,
) -> keras.KerasTensor:
    """Create EfficientNet V2 TF functional model

    Args:
        x (keras.KerasTensor): Input tensor
        params (EfficientNetParams): Model parameters.
        num_classes (int, optional): Number of classes.

    Returns:
        keras.KerasTensor: Output tensor
    """

    # Force input to be 4D (add dummy dimension)
    requires_reshape = len(x.shape) == 3
    if requires_reshape:
        y = keras.layers.Reshape((1,) + x.shape[1:])(x)
    else:
        y = x
    # END IF

    # Stem
    if params.input_filters > 0:
        name = "stem"
        filters = make_divisible(params.input_filters, 8)
        y = conv2d(
            filters,
            kernel_size=params.input_kernel_size,
            strides=params.input_strides,
            name=name,
        )(y)
        y = batch_normalization(name=name)(y)
        y = keras.layers.Activation(params.input_activation, name=f"{name}_act")(y)
    # END IF

    y = efficientnet_core(blocks=params.blocks, drop_connect_rate=params.drop_connect_rate)(y)

    if params.output_filters:
        name = "neck"
        filters = make_divisible(params.output_filters, 8)
        y = conv2d(filters, kernel_size=(1, 1), strides=(1, 1), padding="same", name=name)(y)
        y = batch_normalization(name=name)(y)
        y = keras.layers.Activation(params.output_activation, name=f"{name}_act")(y)

    if params.include_top:
        name = "top"
        y = keras.layers.GlobalAveragePooling2D(name=f"{name}_pool")(y)
        if 0 < params.dropout < 1:
            y = keras.layers.Dropout(params.dropout)(y)
        if num_classes is not None:
            y = keras.layers.Dense(num_classes, name=name)(y)

        if params.output_activation:
            y = keras.layers.Activation(params.output_activation)(y)
        elif not params.use_logits:
            y = keras.layers.Softmax()(y)
    # Only reshape if required
    elif requires_reshape:
        y = keras.layers.Reshape(y.shape[2:])(y)

    return y