tsmixer
TsMixer Model
Overview
TsMixer is a fully MLP-based architecture for time series data.
For more info, refer to the original paper TsMixer: An All-MLP Architecture for Time Series.
Classes:
-
TsMixerParams
–TsMixer parameters
-
TsMixerModel
–Helper class to generate model from parameters
Functions:
-
ts_block
–Residual block of TsMixer
-
norm_layer
–Normalization layer
-
tsmixer_layer
–TsMixer layer
Classes
TsMixerBlockParams
TsMixerParams
TsMixerModel
Helper class to generate model from parameters
Functions
layer_from_params
staticmethod
layer_from_params(inputs: keras.Input, params: TsMixerParams | dict, num_classes: int | None = None)
Create layer from parameters
Source code in neuralspot_edge/models/tsmixer.py
model_from_params
staticmethod
model_from_params(inputs: keras.Input, params: TsMixerParams | dict, num_classes: int | None = None)
Create model from parameters
Source code in neuralspot_edge/models/tsmixer.py
Functions
norm_layer
Normalization layer
Parameters:
Returns:
-
Layer
–keras.Layer: Layer
Source code in neuralspot_edge/models/tsmixer.py
ts_block
Residual block of TSMixer.
Parameters:
-
params
(TsBlockParams
) –Block parameters
-
name
(str
) –Name
Returns:
-
Layer
–keras.Layer: Layer
Source code in neuralspot_edge/models/tsmixer.py
tsmixer_layer
TsMixer layer
Parameters:
-
inputs
(KerasTensor
) –Input tensor
-
params
(any
) –Model parameters
-
num_classes
(int
) –Number of classes
Returns:
-
KerasTensor
–keras.KerasTensor: Output tensor