tsmixer
TsMixer Model
Overview
TsMixer is a fully MLP-based architecture for time series data.
For more info, refer to the original paper TsMixer: An All-MLP Architecture for Time Series.
Classes:
-
TsMixerParams–TsMixer parameters
-
TsMixerModel–Helper class to generate model from parameters
Functions:
-
ts_block–Residual block of TsMixer
-
norm_layer–Normalization layer
-
tsmixer_layer–TsMixer layer
Classes
TsMixerBlockParams
TsMixerParams
TsMixerModel
Helper class to generate model from parameters
Functions
layer_from_params
staticmethod
layer_from_params(inputs: keras.Input, params: TsMixerParams | dict, num_classes: int | None = None)
Create layer from parameters
Source code in neuralspot_edge/models/tsmixer.py
model_from_params
staticmethod
model_from_params(inputs: keras.Input, params: TsMixerParams | dict, num_classes: int | None = None)
Create model from parameters
Source code in neuralspot_edge/models/tsmixer.py
Functions
norm_layer
Normalization layer
Parameters:
Returns:
-
Layer–keras.Layer: Layer
Source code in neuralspot_edge/models/tsmixer.py
ts_block
Residual block of TSMixer.
Parameters:
-
(paramsTsBlockParams) –Block parameters
-
(namestr) –Name
Returns:
-
Layer–keras.Layer: Layer
Source code in neuralspot_edge/models/tsmixer.py
tsmixer_layer
TsMixer layer
Parameters:
-
(inputsKerasTensor) –Input tensor
-
(paramsany) –Model parameters
-
(num_classesint) –Number of classes
Returns:
-
KerasTensor–keras.KerasTensor: Output tensor