unet
U-Net
Overview
U-Net is a type of convolutional neural network (CNN) that is commonly used for segmentation tasks. U-Net is a fully convolutional network that consists of a series of convolutional layers and pooling layers. The pooling layers are used to downsample the input while the convolutional layers are used to upsample the input. The skip connections between the pooling layers and convolutional layers allow U-Net to preserve spatial/temporal information while also allowing for faster training and inference times.
For more info, refer to the original paper U-Net: Convolutional Networks for Biomedical Image Segmentation.
Classes:
-
UNetParams
–U-Net parameters
-
UNetModel
–Helper class to generate model from parameters
Functions:
-
unet_layer
–Generate functional U-Net model
Additions
The U-Net architecture has been modified to allow the following:
- Enable 1D and 2D variants.
- Convolutional pairs can factorized into depthwise separable convolutions.
- Specifiy the number of convolutional layers per block both downstream and upstream.
- Normalization can be set between batch normalization and layer normalization.
- ReLU is replaced with the approximated ReLU6.
Usage
Instantiate from UNetParams:
import keras
from neuralspot_edge.models import UNet, UNetParams, UNetBlockParams
inputs = keras.Input(shape=(800, 1))
num_classes = 5
model = UNet(
x=inputs,
params=UNetParams(
blocks=[
UNetBlockParams(filters=12, depth=2, ddepth=1, kernel=(1, 5), pool=(1, 3), strides=(1, 2), skip=True, seperable=True),
UNetBlockParams(filters=24, depth=2, ddepth=1, kernel=(1, 5), pool=(1, 3), strides=(1, 2), skip=True, seperable=True),
UNetBlockParams(filters=32, depth=2, ddepth=1, kernel=(1, 5), pool=(1, 3), strides=(1, 2), skip=True, seperable=True),
UNetBlockParams(filters=48, depth=2, ddepth=1, kernel=(1, 5), pool=(1, 3), strides=(1, 2), skip=True, seperable=True)
],
output_kernel_size=(1, 5),
include_top=True,
use_logits=True,
model_name="unet"
),
num_classes=num_classes,
)
Instantiate from object:
params = {
"name": "unet",
"params": {
"blocks": [
{"filters": 12, "depth": 2, "ddepth": 1, "kernel": [1, 5], "pool": [1, 3], "strides": [1, 2], "skip": true, "seperable": true},
{"filters": 24, "depth": 2, "ddepth": 1, "kernel": [1, 5], "pool": [1, 3], "strides": [1, 2], "skip": true, "seperable": true},
{"filters": 32, "depth": 2, "ddepth": 1, "kernel": [1, 5], "pool": [1, 3], "strides": [1, 2], "skip": true, "seperable": true},
{"filters": 48, "depth": 2, "ddepth": 1, "kernel": [1, 5], "pool": [1, 3], "strides": [1, 2], "skip": true, "seperable": true}
],
"output_kernel_size": [1, 5],
"include_top": true,
"use_logits": true,
"model_name": "efficientnetv2"
}
}
model = unet_from_object(inputs, params, num_classes)
Classes
UNetBlockParams
UNet block parameters
Attributes:
-
filters
(int
) –Number of filters
-
depth
(int
) –Layer depth
-
ddepth
(int | None
) –Decoder depth
-
kernel
(int | tuple[int, int]
) –Kernel size
-
pool
(int | tuple[int, int]
) –Pool size
-
strides
(int | tuple[int, int]
) –Stride size
-
skip
(bool
) –Add skip connection
-
seperable
(bool
) –Use seperable convs
-
dropout
(float | None
) –Dropout rate
-
norm
(Literal['batch', 'layer'] | None
) –Normalization type
-
activation
(Literal['relu', 'relu6', 'leaky_relu', 'elu', 'selu']
) –Activation
-
dilation
(int | tuple[int, int] | None
) –Dilation factor
UNetParams
UNetModel
Helper class to generate model from parameters
Functions
layer_from_params
staticmethod
Create layer from parameters
Source code in neuralspot_edge/models/unet.py
model_from_params
staticmethod
Create model from parameters
Source code in neuralspot_edge/models/unet.py
Functions
unet_layer
Create UNet TF functional model
Parameters:
-
x
(KerasTensor
) –Input tensor
-
params
(ResNetParams
) –Model parameters.
-
num_classes
(int
) –Number of classes.
Returns:
-
KerasTensor
–keras.KerasTensor: Output tensor
Source code in neuralspot_edge/models/unet.py
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
|