preprocessing
Preprocessing Utility API
This module provides utility functions for preprocessing data.
Functions:
-
parse_factor–Parse factor
-
convert_inputs_to_tf_dataset–Convert inputs to tf.data.Dataset
-
create_interleaved_dataset_from_generator–Create interleaved dataset from generator
-
create_dataset_from_data–Create dataset from data
-
get_output_signature–Get output signature
-
get_output_signature_from_fn–Get output signature from function
-
get_output_signature_from_gen–Get output signature from generator
Functions
convert_inputs_to_tf_dataset
Convert inputs to tf.data.Dataset.
Source code in neuralspot_edge/utils/preprocessing.py
create_interleaved_dataset_from_generator
create_interleaved_dataset_from_generator(data_generator: Callable[[Generator[T, None, None]], Generator[K, None, None]], id_generator: Callable[[list[T]], Generator[T, None, None]], ids: list[T], spec: tuple[tf.TensorSpec, tf.TensorSpec], preprocess: Callable[[K], K] | None = None, num_workers: int = 4) -> tf.data.Dataset
Create TF dataset pipeline by interleaving multiple workers across ids
The id_generator is used to generate ids for each worker. The data_generator is used to generate data for each id.
Parameters:
-
(data_generatorCallable[[Generator[T, None, None]], Generator[K, None, None]]) –Data generator
-
(id_generatorCallable[[list[T]], Generator[T, None, None]]) –Id generator
-
(idslist[T]) –List of ids
-
(spectuple[TensorSpec, TensorSpec]) –Tensor spec
-
(preprocessCallable[[K], K] | None, default:None) –Preprocess function. Defaults to None.
-
(num_workersint, default:4) –Number of workers. Defaults to 4.
Returns:
-
Dataset–tf.data.Dataset: Dataset
Source code in neuralspot_edge/utils/preprocessing.py
create_dataset_from_data
create_dataset_from_data(x: npt.NDArray, y: npt.NDArray, spec: tuple[tf.TensorSpec]) -> tf.data.Dataset
Helper function to create dataset from static data
Parameters:
Returns:
-
Dataset–tf.data.Dataset: Dataset
Source code in neuralspot_edge/utils/preprocessing.py
get_output_signature
get_output_signature(outputs: keras.KerasTensor | npt.NDArray | tuple[keras.KerasTensor | npt.NDArray]) -> tf.TensorSpec | tuple[tf.TensorSpec]
Get output signature from sample outputs
Parameters:
-
(outputsKerasTensor | NDArray | tuple[KerasTensor | NDArray]) –Outputs. A tensor or tuple of tensors. Either KerasTensor, tf.Tensor, or numpy array.
Returns:
-
TensorSpec | tuple[TensorSpec]–tf.TensorSpec: Tensor spec
Source code in neuralspot_edge/utils/preprocessing.py
get_output_signature_from_fn
get_output_signature_from_fn(fn: Callable[..., keras.KerasTensor], *args) -> tf.TensorSpec | tuple[tf.TensorSpec]
get_output_signature_from_gen
get_output_signature_from_gen(gen: Generator[T, None, None], *args) -> tf.TensorSpec | tuple[tf.TensorSpec]