Skip to content

CRNN Model Configuration

This is a simple CRNN (Convolutional Recurrent Neural Network) configuration supporting the following layer types:

  • conv2d
  • lstm
  • fc (fully connected)
  • dropout
  • batchnorm
  • layernorm

Example Configuration (config_crnn.yaml)

name: crnn_simple
layer_configs:
  - type: conv2d
    filters: 64
    kernel_size: [3, 3]
    strides: [1, 1]
    activation: relu

  - type: batchnorm
    momentum: 0.99
    epsilon: 1e-3

  - type: dropout
    rate: 0.2

  - type: lstm
    units: 128

  - type: layernorm
    epsilon: 1e-5

  - type: fc
    units: 64
    activation: relu

  - type: dropout
    rate: 0.3

  - type: fc
    units: 1
    activation: linear

Layer Descriptions

  • conv2d: 2D convolutional layer for spatial feature extraction
  • batchnorm: Batch normalization layer

  • momentum: Decay rate for moving average (e.g. 0.99)

  • epsilon: Small constant to avoid division by zero (e.g. 1e-3)
  • dropout: Regularization layer to prevent overfitting

  • rate: Fraction of input units to drop (e.g. 0.2)

  • lstm: Long Short-Term Memory layer for sequential modeling

  • units: Number of hidden units

  • layernorm: Layer normalization across features

  • epsilon: Small constant for numerical stability (e.g. 1e-5)

  • fc: Fully connected (dense) layer

  • units: Number of neurons

  • activation: Activation function (e.g. relu, sigmoid, linear)

Only the above layers and parameters are allowed. Ensure your configuration adheres to this format for compatibility.