CRNN Model Configuration
This is a simple CRNN (Convolutional Recurrent Neural Network) configuration supporting the following layer types:
conv2dlstmfc(fully connected)dropoutbatchnormlayernorm
Example Configuration (config_crnn.yaml)
name: crnn_simple
layer_configs:
- type: conv2d
filters: 64
kernel_size: [3, 3]
strides: [1, 1]
activation: relu
- type: batchnorm
momentum: 0.99
epsilon: 1e-3
- type: dropout
rate: 0.2
- type: lstm
units: 128
- type: layernorm
epsilon: 1e-5
- type: fc
units: 64
activation: relu
- type: dropout
rate: 0.3
- type: fc
units: 1
activation: linear
Layer Descriptions
conv2d: 2D convolutional layer for spatial feature extraction-
batchnorm: Batch normalization layer -
momentum: Decay rate for moving average (e.g.0.99) epsilon: Small constant to avoid division by zero (e.g.1e-3)-
dropout: Regularization layer to prevent overfitting -
rate: Fraction of input units to drop (e.g.0.2) -
lstm: Long Short-Term Memory layer for sequential modeling -
units: Number of hidden units -
layernorm: Layer normalization across features -
epsilon: Small constant for numerical stability (e.g.1e-5) -
fc: Fully connected (dense) layer -
units: Number of neurons activation: Activation function (e.g.relu,sigmoid,linear)
Only the above layers and parameters are allowed. Ensure your configuration adheres to this format for compatibility.