๐ Evaluation
This page describes how to evaluate a trained Speech Enhancement (SE) model using the soundkit CLI. You can compute metrics like SI-SDR, PESQ, STOI, or DNSMOS on custom WAV files or test datasets.
๐ง Run evaluate Mode
soundkit -t se -m evaluate -c your_config.yaml
๐งพ Evaluation Parameters
| Parameter | Description |
|---|---|
epoch_loaded |
Epoch number of the model checkpoint to load for evaluation. Use best, latest, or a specific integer |
data.dir |
Directory containing WAV files to evaluate |
data.files |
List of WAV filenames (relative to data.dir) for evaluation |
result_folder |
Folder to save evaluation results (e.g., audio output, spectrograms, plots) |
Example:
evaluate:
epoch_loaded: best
data:
dir: ./wavs/se/test_wavs
files: [keyboard_steak.wav, i_like_steak.wav, steak_hairdryer.wav]
result_folder: ./soundkit/tasks/se/test_results/crnn100_lookahead0
๐ Output
Running evaluation produces:
- Enhanced audio files saved to
result_folder - Visualization plots (e.g., waveforms, spectrograms)
- Optional metrics like SI-SDR, PESQ, or STOI if supported
๐ Ensure your config references the same model and feature settings used during training.
๐ Advanced Tips
- Evaluation supports running on multiple audio files with different noise types.
- You can evaluate using test TFRecords (if implemented in future versions) or directly with WAV files as shown.