๐ Evaluation (Voice Activity Detection - VAD)
This page describes how to evaluate a trained Voice Activity Detection (VAD) model using the soundkit CLI. You can run inference on custom WAV files and generate voice activity predictions.
๐ง Run evaluate Mode
soundkit -t vad -m evaluate -c configs/vad/vad.yaml
๐งพ Evaluation Parameters
| Parameter | Description |
|---|---|
epoch_loaded |
Model checkpoint to load for evaluation. Use best, latest, or a specific integer |
data.dir |
Path to the folder containing WAV files for evaluation |
data.files |
List of WAV filenames (relative to data.dir) to evaluate |
result_folder |
Directory to save prediction results, plots, and related outputs |
Example:
evaluate:
epoch_loaded: best
data:
dir: ./wavs/vad/test_wavs
files: [rpc_audio_raw.wav, speech.wav, i_like_steak.wav, keyboard_steak.wav, steak_hairdryer.wav]
result_folder: ./soundkit/tasks/vad/test_results/crnn100_lookahead0
๐ Output
Running the evaluation step will generate:
- Prediction results showing voice activity regions
- Visualization of audio signals and detected speech segments
๐ Be sure the
vad.yamlconfiguration aligns with the model settings used during training and export.