๐ค Model Export (Voice Activity Detection - VAD)
This page explains how to export a trained Voice Activity Detection (VAD) model for deployment on embedded systems or in-browser inference using WebUSB.
๐ง Run export Mode
soundkit -t vad -m export -c configs/vad/vad.yaml
This command loads a trained model checkpoint and converts it into deployable formats like TFLite or embedded C source files.
๐งพ Export Parameters
| Parameter | Description |
|---|---|
epoch_loaded |
Epoch of the checkpoint to export (best, latest, or a specific integer) |
tflite_dir |
Directory to store exported files (e.g., .tflite, .cc, .h) |
Example:
export:
epoch_loaded: best
tflite_dir: ./soundkit/tasks/vad/tflite
๐ฆ Exported Artifacts
Depending on your configuration, the following files may be generated:
| File | Description |
|---|---|
model.tflite |
TensorFlow Lite model optimized for MCU deployment |
model.cc, model.h |
C array representations of the TFLite model |
params_nn1_nnvad.h |
Header file containing model parameters for firmware integration |
quant_stats.json |
(Optional) JSON file with quantization statistics if quantized export is used |
๐ Integration Targets
Exported models are suitable for:
- TensorFlow Lite Micro (TFLM) deployment on embedded processors (e.g., Ambiq Apollo)
- Voice activity detection in custom firmware/DSP applications
- WebUSB demos using
.tflitemodels in-browser
๐ง Notes
- Be sure your export and demo modes use the same
epoch_loaded - Use
tflite_dirconsistently acrossexport,demo, and any firmware build scripts - If model changes (e.g., architecture, sampling rate), re-export is necessary